Abstract:A large amount of instructional text data is essential to enhance the performance of pre-trained large language models (LLMs) for downstream tasks. This data can contain sensitive information and therefore cannot be shared in practice, resulting in data silos that limit the effectiveness of LLMs on various tasks. Federated learning (FL) enables collaborative fine-tuning across different clients without sharing their data. Nonetheless, in practice, this instructional text data is highly heterogeneous in both quantity and distribution across clients, necessitating distinct model structures to best accommodate the variations. However, existing federated fine-tuning approaches either enforce the same model structure or rely on predefined ad-hoc architectures unaware of data distribution, resulting in suboptimal performance. To address this challenge, we propose FedAMoLE, a lightweight personalized federated fine-tuning framework that leverages data-driven heterogeneous model architectures. FedAMoLE introduces the Adaptive Mixture of LoRA Experts (AMoLE) module, which facilitates model heterogeneity with minimal communication overhead by allocating varying numbers of LoRA-based domain experts to each client. Furthermore, we develop a reverse selection-based expert assignment (RSEA) strategy, which enables data-driven model architecture adjustment during fine-tuning by allowing domain experts to select clients that best align with their knowledge domains. Extensive experiments across six different scenarios of data heterogeneity demonstrate that FedAMoLE significantly outperforms existing methods for federated LLM fine-tuning, achieving superior accuracy while maintaining good scalability.
Abstract:Federated Learning (FL) is an evolving paradigm that enables multiple parties to collaboratively train models without sharing raw data. Among its variants, Vertical Federated Learning (VFL) is particularly relevant in real-world, cross-organizational collaborations, where distinct features of a shared instance group are contributed by different parties. In these scenarios, parties are often linked using fuzzy identifiers, leading to a common practice termed as multi-party fuzzy VFL. Existing models generally address either multi-party VFL or fuzzy VFL between two parties. Extending these models to practical multi-party fuzzy VFL typically results in significant performance degradation and increased costs for maintaining privacy. To overcome these limitations, we introduce the Federated Transformer (FeT), a novel framework that supports multi-party VFL with fuzzy identifiers. FeT innovatively encodes these identifiers into data representations and employs a transformer architecture distributed across different parties, incorporating three new techniques to enhance performance. Furthermore, we have developed a multi-party privacy framework for VFL that integrates differential privacy with secure multi-party computation, effectively protecting local representations while minimizing associated utility costs. Our experiments demonstrate that the FeT surpasses the baseline models by up to 46\% in terms of accuracy when scaled to 50 parties. Additionally, in two-party fuzzy VFL settings, FeT also shows improved performance and privacy over cutting-edge VFL models.
Abstract:Instruction tuning helps improve pretrained large language models (LLMs) in terms of the responsiveness to human instructions, which is benefited from diversified instruction data. Federated learning extends the sources of instruction data by exploiting the diversified client-side data, making it increasingly popular for tuning LLMs. Existing approaches of federated LLM tuning typically traverse all local data during local training, bringing excessive computation overhead and posing a risk of overfitting local data. Thus, a federated data-efficient instruction tuning approach, which consumes relatively little data from the entire dataset, is needed. In response, this work introduces an approach of federated data-efficient instruction tuning for LLMs, FedHDS, which utilizes a representative subset of edge-side data, coreset, to tune the LLM. It reduces the redundancy of data samples at both intra-client and inter-client levels through a hierarchical data selection framework performed by jointly selecting a small number of representative data samples for local training without sharing the raw data. Extensive experiments conducted across six scenarios with various LLMs, datasets and data partitions demonstrate that FedHDS significantly reduces the amount of data required for fine-tuning while improving the responsiveness of the instruction-tuned LLMs to unseen tasks.
Abstract:As large language models (LLMs) become increasingly prevalent in web services, effectively leveraging domain-specific knowledge while ensuring privacy has become critical. Existing methods, such as retrieval-augmented generation (RAG) and differentially private data synthesis, often compromise either the utility of domain knowledge or the privacy of sensitive data, limiting their applicability in specialized domains. To address these challenges, we propose \textit{Llamdex}, a novel framework that integrates privacy-preserving, domain-specific models into LLMs. Our approach significantly enhances the accuracy of domain-specific tasks, achieving up to a 26\% improvement compared to existing methods under the same differential privacy constraints. Experimental results show that Llamdex not only improves the accuracy of LLM responses but also maintains comparable inference efficiency to the original LLM, highlighting its potential for real-world applications.
Abstract:Vertical Federated Learning (VFL) is a crucial paradigm for training machine learning models on feature-partitioned, distributed data. However, due to privacy restrictions, few public real-world VFL datasets exist for algorithm evaluation, and these represent a limited array of feature distributions. Existing benchmarks often resort to synthetic datasets, derived from arbitrary feature splits from a global set, which only capture a subset of feature distributions, leading to inadequate algorithm performance assessment. This paper addresses these shortcomings by introducing two key factors affecting VFL performance - feature importance and feature correlation - and proposing associated evaluation metrics and dataset splitting methods. Additionally, we introduce a real VFL dataset to address the deficit in image-image VFL scenarios. Our comprehensive evaluation of cutting-edge VFL algorithms provides valuable insights for future research in the field.
Abstract:As societal concerns on data privacy recently increase, we have witnessed data silos among multiple parties in various applications. Federated learning emerges as a new learning paradigm that enables multiple parties to collaboratively train a machine learning model without sharing their raw data. Vertical federated learning, where each party owns different features of the same set of samples and only a single party has the label, is an important and challenging topic in federated learning. Communication costs among different parties have been a major hurdle for practical vertical learning systems. In this paper, we propose a novel communication-efficient vertical federated learning algorithm named FedOnce, which requires only one-shot communication among parties. To improve model accuracy and provide privacy guarantee, FedOnce features unsupervised learning representations in the federated setting and privacy-preserving techniques based on moments accountant. The comprehensive experiments on 10 datasets demonstrate that FedOnce achieves close performance compared to state-of-the-art vertical federated learning algorithms with much lower communication costs. Meanwhile, our privacy-preserving technique significantly outperforms the state-of-the-art approaches under the same privacy budget.
Abstract:As the privacy of machine learning has drawn increasing attention, federated learning is introduced to enable collaborative learning without revealing raw data. Notably, \textit{vertical federated learning} (VFL), where parties share the same set of samples but only hold partial features, has a wide range of real-world applications. However, existing studies in VFL rarely study the ``record linkage'' process. They either design algorithms assuming the data from different parties have been linked or use simple linkage methods like exact-linkage or top1-linkage. These approaches are unsuitable for many applications, such as the GPS location and noisy titles requiring fuzzy matching. In this paper, we design a novel similarity-based VFL framework, FedSim, which is suitable for more real-world applications and achieves higher performance on traditional VFL tasks. Moreover, we theoretically analyze the privacy risk caused by sharing similarities. Our experiments on three synthetic datasets and five real-world datasets with various similarity metrics show that FedSim consistently outperforms other state-of-the-art baselines.
Abstract:This paper presents and characterizes an Open Application Repository for Federated Learning (OARF), a benchmark suite for federated machine learning systems. Previously available benchmarks for federated learning have focused mainly on synthetic datasets and use a very limited number of applications. OARF includes different data partitioning methods (horizontal, vertical and hybrid) as well as emerging applications in image, text and structured data, which represent different scenarios in federated learning. Our characterization shows that the benchmark suite is diverse in data size, distribution, feature distribution and learning task complexity. We have developed reference implementations, and evaluated the important aspects of federated learning, including model accuracy, communication cost, differential privacy, secure multiparty computation and vertical federated learning.
Abstract:The Gradient Boosting Decision Tree (GBDT) is a popular machine learning model for various tasks in recent years. In this paper, we study how to improve model accuracy of GBDT while preserving the strong guarantee of differential privacy. Sensitivity and privacy budget are two key design aspects for the effectiveness of differential private models. Existing solutions for GBDT with differential privacy suffer from the significant accuracy loss due to too loose sensitivity bounds and ineffective privacy budget allocations (especially across different trees in the GBDT model). Loose sensitivity bounds lead to more noise to obtain a fixed privacy level. Ineffective privacy budget allocations worsen the accuracy loss especially when the number of trees is large. Therefore, we propose a new GBDT training algorithm that achieves tighter sensitivity bounds and more effective noise allocations. Specifically, by investigating the property of gradient and the contribution of each tree in GBDTs, we propose to adaptively control the gradients of training data for each iteration and leaf node clipping in order to tighten the sensitivity bounds. Furthermore, we design a novel boosting framework to allocate the privacy budget between trees so that the accuracy loss can be further reduced. Our experiments show that our approach can achieve much better model accuracy than other baselines.