Federated Learning (FL) is an evolving paradigm that enables multiple parties to collaboratively train models without sharing raw data. Among its variants, Vertical Federated Learning (VFL) is particularly relevant in real-world, cross-organizational collaborations, where distinct features of a shared instance group are contributed by different parties. In these scenarios, parties are often linked using fuzzy identifiers, leading to a common practice termed as multi-party fuzzy VFL. Existing models generally address either multi-party VFL or fuzzy VFL between two parties. Extending these models to practical multi-party fuzzy VFL typically results in significant performance degradation and increased costs for maintaining privacy. To overcome these limitations, we introduce the Federated Transformer (FeT), a novel framework that supports multi-party VFL with fuzzy identifiers. FeT innovatively encodes these identifiers into data representations and employs a transformer architecture distributed across different parties, incorporating three new techniques to enhance performance. Furthermore, we have developed a multi-party privacy framework for VFL that integrates differential privacy with secure multi-party computation, effectively protecting local representations while minimizing associated utility costs. Our experiments demonstrate that the FeT surpasses the baseline models by up to 46\% in terms of accuracy when scaled to 50 parties. Additionally, in two-party fuzzy VFL settings, FeT also shows improved performance and privacy over cutting-edge VFL models.