WeBank, China, Hong Kong University of Science and Technology, China
Abstract:Online shopping is a complex multi-task, few-shot learning problem with a wide and evolving range of entities, relations, and tasks. However, existing models and benchmarks are commonly tailored to specific tasks, falling short of capturing the full complexity of online shopping. Large Language Models (LLMs), with their multi-task and few-shot learning abilities, have the potential to profoundly transform online shopping by alleviating task-specific engineering efforts and by providing users with interactive conversations. Despite the potential, LLMs face unique challenges in online shopping, such as domain-specific concepts, implicit knowledge, and heterogeneous user behaviors. Motivated by the potential and challenges, we propose Shopping MMLU, a diverse multi-task online shopping benchmark derived from real-world Amazon data. Shopping MMLU consists of 57 tasks covering 4 major shopping skills: concept understanding, knowledge reasoning, user behavior alignment, and multi-linguality, and can thus comprehensively evaluate the abilities of LLMs as general shop assistants. With Shopping MMLU, we benchmark over 20 existing LLMs and uncover valuable insights about practices and prospects of building versatile LLM-based shop assistants. Shopping MMLU can be publicly accessed at https://github.com/KL4805/ShoppingMMLU. In addition, with Shopping MMLU, we host a competition in KDD Cup 2024 with over 500 participating teams. The winning solutions and the associated workshop can be accessed at our website https://amazon-kddcup24.github.io/.
Abstract:Federated Learning (FL) facilitates collaborative training of a global model whose performance is boosted by private data owned by distributed clients, without compromising data privacy. Yet the wide applicability of FL is hindered by entanglement of data distributions across different clients. This paper demonstrates for the first time that by disentangling data distributions FL can in principle achieve efficiencies comparable to those of distributed systems, requiring only one round of communication. To this end, we propose a novel FedDistr algorithm, which employs stable diffusion models to decouple and recover data distributions. Empirical results on the CIFAR100 and DomainNet datasets show that FedDistr significantly enhances model utility and efficiency in both disentangled and near-disentangled scenarios while ensuring privacy, outperforming traditional federated learning methods.
Abstract:As large language models (LLMs) become increasingly prevalent in web services, effectively leveraging domain-specific knowledge while ensuring privacy has become critical. Existing methods, such as retrieval-augmented generation (RAG) and differentially private data synthesis, often compromise either the utility of domain knowledge or the privacy of sensitive data, limiting their applicability in specialized domains. To address these challenges, we propose \textit{Llamdex}, a novel framework that integrates privacy-preserving, domain-specific models into LLMs. Our approach significantly enhances the accuracy of domain-specific tasks, achieving up to a 26\% improvement compared to existing methods under the same differential privacy constraints. Experimental results show that Llamdex not only improves the accuracy of LLM responses but also maintains comparable inference efficiency to the original LLM, highlighting its potential for real-world applications.
Abstract:Data and model heterogeneity are two core issues in Heterogeneous Federated Learning (HtFL). In scenarios with heterogeneous model architectures, aggregating model parameters becomes infeasible, leading to the use of prototypes (i.e., class representative feature vectors) for aggregation and guidance. However, they still experience a mismatch between the extra guiding objective and the client's original local objective when aligned with global prototypes. Thus, we propose a Federated Learning-to-Guide (FedL2G) method that adaptively learns to guide local training in a federated manner and ensures the extra guidance is beneficial to clients' original tasks. With theoretical guarantees, FedL2G efficiently implements the learning-to-guide process using only first-order derivatives w.r.t. model parameters and achieves a non-convex convergence rate of O(1/T). We conduct extensive experiments on two data heterogeneity and six model heterogeneity settings using 14 heterogeneous model architectures (e.g., CNNs and ViTs) to demonstrate FedL2G's superior performance compared to six counterparts.
Abstract:Session-based Social Recommendation (SSR) leverages social relationships within online networks to enhance the performance of Session-based Recommendation (SR). However, existing SSR algorithms often encounter the challenge of ``friend data sparsity''. Moreover, significant discrepancies can exist between the purchase preferences of social network friends and those of the target user, reducing the influence of friends relative to the target user's own preferences. To address these challenges, this paper introduces the concept of ``Like-minded Peers'' (LMP), representing users whose preferences align with the target user's current session based on their historical sessions. This is the first work, to our knowledge, that uses LMP to enhance the modeling of social influence in SSR. This approach not only alleviates the problem of friend data sparsity but also effectively incorporates users with similar preferences to the target user. We propose a novel model named Transformer Encoder with Graph Attention Aggregator Recommendation (TEGAARec), which includes the TEGAA module and the GAT-based social aggregation module. The TEGAA module captures and merges both long-term and short-term interests for target users and LMP users. Concurrently, the GAT-based social aggregation module is designed to aggregate the target users' dynamic interests and social influence in a weighted manner. Extensive experiments on four real-world datasets demonstrate the efficacy and superiority of our proposed model and ablation studies are done to illustrate the contributions of each component in TEGAARec.
Abstract:Federated Class Continual Learning (FCCL) merges the challenges of distributed client learning with the need for seamless adaptation to new classes without forgetting old ones. The key challenge in FCCL is catastrophic forgetting, an issue that has been explored to some extent in Continual Learning (CL). However, due to privacy preservation requirements, some conventional methods, such as experience replay, are not directly applicable to FCCL. Existing FCCL methods mitigate forgetting by generating historical data through federated training of GANs or data-free knowledge distillation. However, these approaches often suffer from unstable training of generators or low-quality generated data, limiting their guidance for the model. To address this challenge, we propose a novel method of data replay based on diffusion models. Instead of training a diffusion model, we employ a pre-trained conditional diffusion model to reverse-engineer each class, searching the corresponding input conditions for each class within the model's input space, significantly reducing computational resources and time consumption while ensuring effective generation. Furthermore, we enhance the classifier's domain generalization ability on generated and real data through contrastive learning, indirectly improving the representational capability of generated data for real data. Comprehensive experiments demonstrate that our method significantly outperforms existing baselines. Code is available at https://github.com/jinglin-liang/DDDR.
Abstract:The automatic classification of animal sounds presents an enduring challenge in bioacoustics, owing to the diverse statistical properties of sound signals, variations in recording equipment, and prevalent low Signal-to-Noise Ratio (SNR) conditions. Deep learning models like Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) have excelled in human speech recognition but have not been effectively tailored to the intricate nature of animal sounds, which exhibit substantial diversity even within the same domain. We propose an automated classification framework applicable to general animal sound classification. Our approach first optimizes audio features from Mel-frequency cepstral coefficients (MFCC) including feature rearrangement and feature reduction. It then uses the optimized features for the deep learning model, i.e., an attention-based Bidirectional LSTM (Bi-LSTM), to extract deep semantic features for sound classification. We also contribute an animal sound benchmark dataset encompassing oceanic animals and birds1. Extensive experimentation with real-world datasets demonstrates that our approach consistently outperforms baseline methods by over 25% in precision, recall, and accuracy, promising advancements in animal sound classification.
Abstract:The scaling law, a strategy that involves the brute-force scaling of the training dataset and learnable parameters, has become a prevalent approach for developing stronger learning models. In this paper, we examine its rationale in terms of learning from relational graphs. We demonstrate that directly adhering to such a scaling law does not necessarily yield stronger models due to architectural incompatibility and representation bottlenecks. To tackle this challenge, we propose a novel framework for learning from relational graphs via knowledge-aware parsimony learning. Our method draws inspiration from the duality between data and knowledge inherent in these graphs. Specifically, we first extract knowledge (like symbolic logic and physical laws) during the learning process, and then apply combinatorial generalization to the task at hand. This extracted knowledge serves as the ``building blocks'' for achieving parsimony learning. By applying this philosophy to architecture, parameters, and inference, we can effectively achieve versatile, sample-efficient, and interpretable learning. Experimental results show that our proposed framework surpasses methods that strictly follow the traditional scaling-up roadmap. This highlights the importance of incorporating knowledge in the development of next-generation learning technologies.
Abstract:In the context of real-world applications, leveraging large language models (LLMs) for domain-specific tasks often faces two major challenges: domain-specific knowledge privacy and constrained resources. To address these issues, we propose PDSS, a privacy-preserving framework for step-by-step distillation of LLMs. PDSS works on a server-client architecture, wherein client transmits perturbed prompts to the server's LLM for rationale generation. The generated rationales are then decoded by the client and used to enrich the training of task-specific small language model(SLM) within a multi-task learning paradigm. PDSS introduces two privacy protection strategies: the Exponential Mechanism Strategy and the Encoder-Decoder Strategy, balancing prompt privacy and rationale usability. Experiments demonstrate the effectiveness of PDSS in various text generation tasks, enabling the training of task-specific SLM with enhanced performance while prioritizing data privacy protection.
Abstract:Federated Graph Learning (FGL) has emerged as a promising way to learn high-quality representations from distributed graph data with privacy preservation. Despite considerable efforts have been made for FGL under either cross-device or cross-silo paradigm, how to effectively capture graph knowledge in a more complicated cross-silo cross-device environment remains an under-explored problem. However, this task is challenging because of the inherent hierarchy and heterogeneity of decentralized clients, diversified privacy constraints in different clients, and the cross-client graph integrity requirement. To this end, in this paper, we propose a Hierarchical Federated Graph Learning (HiFGL) framework for cross-silo cross-device FGL. Specifically, we devise a unified hierarchical architecture to safeguard federated GNN training on heterogeneous clients while ensuring graph integrity. Moreover, we propose a Secret Message Passing (SecMP) scheme to shield unauthorized access to subgraph-level and node-level sensitive information simultaneously. Theoretical analysis proves that HiFGL achieves multi-level privacy preservation with complexity guarantees. Extensive experiments on real-world datasets validate the superiority of the proposed framework against several baselines. Furthermore, HiFGL's versatile nature allows for its application in either solely cross-silo or cross-device settings, further broadening its utility in real-world FGL applications.