WeBank, China, Hong Kong University of Science and Technology, China
Abstract:Graph neural network (GNN) has emerged as a state-of-the-art solution for item recommendation. However, existing GNN-based recommendation methods rely on a centralized storage of fragmented user-item interaction sub-graphs and training on an aggregated global graph, which will lead to privacy concerns. As a response, some recent works develop GNN-based federated recommendation methods by exploiting decentralized and fragmented user-item sub-graphs in order to preserve user privacy. However, due to privacy constraints, the graph convolution process in existing federated recommendation methods is incomplete compared with the centralized counterpart, causing a degradation of the recommendation performance. In this paper, we propose a novel lossless and privacy-preserving graph convolution network (LP-GCN), which fully completes the graph convolution process with decentralized user-item interaction sub-graphs while ensuring privacy. It is worth mentioning that its performance is equivalent to that of the non-federated (i.e., centralized) counterpart. Moreover, we validate its effectiveness through both theoretical analysis and empirical studies. Extensive experiments on three real-world datasets show that our LP-GCN outperforms the existing federated recommendation methods. The code will be publicly available once the paper is accepted.
Abstract:Large Language Models (LLMs) have achieved remarkable success recently, displaying exceptional capabilities in creating understandable and organized text. These LLMs have been utilized in diverse fields, such as clinical research, where domain-specific models like Med-Palm have achieved human-level performance. Recently, researchers have employed advanced prompt engineering to enhance the general reasoning ability of LLMs. Despite the remarkable success of zero-shot Chain-of-Thoughts (CoT) in solving general reasoning tasks, the potential of these methods still remains paid limited attention in the financial reasoning task.To address this issue, we explore multiple prompt strategies and incorporated semantic news information to improve LLMs' performance on financial reasoning tasks.To the best of our knowledge, we are the first to explore this important issue by applying ChatGPT to the gold investment.In this work, our aim is to investigate the financial reasoning capabilities of LLMs and their capacity to generate logical and persuasive investment opinions. We will use ChatGPT, one of the most powerful LLMs recently, and prompt engineering to achieve this goal. Our research will focus on understanding the ability of LLMs in sophisticated analysis and reasoning within the context of investment decision-making. Our study finds that ChatGPT with CoT prompt can provide more explainable predictions and overcome behavioral biases, which is crucial in finance-related tasks and can achieve higher investment returns.
Abstract:By adapting Large Language Models (LLMs) to domain-specific tasks or enriching them with domain-specific knowledge, we can fully harness the capabilities of LLMs. Nonetheless, a gap persists in achieving simultaneous mutual enhancement between the server's LLM and the downstream clients' Small Language Models (SLMs). To address this, we propose FedCoLLM, a novel and parameter-efficient federated framework designed for co-tuning LLMs and SLMs. This approach is aimed at adaptively transferring server-side LLMs knowledge to clients' SLMs while simultaneously enriching the LLMs with domain insights from the clients. To accomplish this, FedCoLLM utilizes lightweight adapters in conjunction with SLMs, facilitating knowledge exchange between server and clients in a manner that respects data privacy while also minimizing computational and communication overhead. Our evaluation of FedCoLLM, utilizing various public LLMs and SLMs across a range of NLP text generation tasks, reveals that the performance of clients' SLMs experiences notable improvements with the assistance of the LLMs. Simultaneously, the LLMs enhanced via FedCoLLM achieves comparable performance to that obtained through direct fine-tuning on clients' data.
Abstract:Online shopping is a complex multi-task, few-shot learning problem with a wide and evolving range of entities, relations, and tasks. However, existing models and benchmarks are commonly tailored to specific tasks, falling short of capturing the full complexity of online shopping. Large Language Models (LLMs), with their multi-task and few-shot learning abilities, have the potential to profoundly transform online shopping by alleviating task-specific engineering efforts and by providing users with interactive conversations. Despite the potential, LLMs face unique challenges in online shopping, such as domain-specific concepts, implicit knowledge, and heterogeneous user behaviors. Motivated by the potential and challenges, we propose Shopping MMLU, a diverse multi-task online shopping benchmark derived from real-world Amazon data. Shopping MMLU consists of 57 tasks covering 4 major shopping skills: concept understanding, knowledge reasoning, user behavior alignment, and multi-linguality, and can thus comprehensively evaluate the abilities of LLMs as general shop assistants. With Shopping MMLU, we benchmark over 20 existing LLMs and uncover valuable insights about practices and prospects of building versatile LLM-based shop assistants. Shopping MMLU can be publicly accessed at https://github.com/KL4805/ShoppingMMLU. In addition, with Shopping MMLU, we host a competition in KDD Cup 2024 with over 500 participating teams. The winning solutions and the associated workshop can be accessed at our website https://amazon-kddcup24.github.io/.
Abstract:Federated Learning (FL) facilitates collaborative training of a global model whose performance is boosted by private data owned by distributed clients, without compromising data privacy. Yet the wide applicability of FL is hindered by entanglement of data distributions across different clients. This paper demonstrates for the first time that by disentangling data distributions FL can in principle achieve efficiencies comparable to those of distributed systems, requiring only one round of communication. To this end, we propose a novel FedDistr algorithm, which employs stable diffusion models to decouple and recover data distributions. Empirical results on the CIFAR100 and DomainNet datasets show that FedDistr significantly enhances model utility and efficiency in both disentangled and near-disentangled scenarios while ensuring privacy, outperforming traditional federated learning methods.
Abstract:As large language models (LLMs) become increasingly prevalent in web services, effectively leveraging domain-specific knowledge while ensuring privacy has become critical. Existing methods, such as retrieval-augmented generation (RAG) and differentially private data synthesis, often compromise either the utility of domain knowledge or the privacy of sensitive data, limiting their applicability in specialized domains. To address these challenges, we propose \textit{Llamdex}, a novel framework that integrates privacy-preserving, domain-specific models into LLMs. Our approach significantly enhances the accuracy of domain-specific tasks, achieving up to a 26\% improvement compared to existing methods under the same differential privacy constraints. Experimental results show that Llamdex not only improves the accuracy of LLM responses but also maintains comparable inference efficiency to the original LLM, highlighting its potential for real-world applications.
Abstract:Data and model heterogeneity are two core issues in Heterogeneous Federated Learning (HtFL). In scenarios with heterogeneous model architectures, aggregating model parameters becomes infeasible, leading to the use of prototypes (i.e., class representative feature vectors) for aggregation and guidance. However, they still experience a mismatch between the extra guiding objective and the client's original local objective when aligned with global prototypes. Thus, we propose a Federated Learning-to-Guide (FedL2G) method that adaptively learns to guide local training in a federated manner and ensures the extra guidance is beneficial to clients' original tasks. With theoretical guarantees, FedL2G efficiently implements the learning-to-guide process using only first-order derivatives w.r.t. model parameters and achieves a non-convex convergence rate of O(1/T). We conduct extensive experiments on two data heterogeneity and six model heterogeneity settings using 14 heterogeneous model architectures (e.g., CNNs and ViTs) to demonstrate FedL2G's superior performance compared to six counterparts.
Abstract:Federated Class Continual Learning (FCCL) merges the challenges of distributed client learning with the need for seamless adaptation to new classes without forgetting old ones. The key challenge in FCCL is catastrophic forgetting, an issue that has been explored to some extent in Continual Learning (CL). However, due to privacy preservation requirements, some conventional methods, such as experience replay, are not directly applicable to FCCL. Existing FCCL methods mitigate forgetting by generating historical data through federated training of GANs or data-free knowledge distillation. However, these approaches often suffer from unstable training of generators or low-quality generated data, limiting their guidance for the model. To address this challenge, we propose a novel method of data replay based on diffusion models. Instead of training a diffusion model, we employ a pre-trained conditional diffusion model to reverse-engineer each class, searching the corresponding input conditions for each class within the model's input space, significantly reducing computational resources and time consumption while ensuring effective generation. Furthermore, we enhance the classifier's domain generalization ability on generated and real data through contrastive learning, indirectly improving the representational capability of generated data for real data. Comprehensive experiments demonstrate that our method significantly outperforms existing baselines. Code is available at https://github.com/jinglin-liang/DDDR.
Abstract:Session-based Social Recommendation (SSR) leverages social relationships within online networks to enhance the performance of Session-based Recommendation (SR). However, existing SSR algorithms often encounter the challenge of ``friend data sparsity''. Moreover, significant discrepancies can exist between the purchase preferences of social network friends and those of the target user, reducing the influence of friends relative to the target user's own preferences. To address these challenges, this paper introduces the concept of ``Like-minded Peers'' (LMP), representing users whose preferences align with the target user's current session based on their historical sessions. This is the first work, to our knowledge, that uses LMP to enhance the modeling of social influence in SSR. This approach not only alleviates the problem of friend data sparsity but also effectively incorporates users with similar preferences to the target user. We propose a novel model named Transformer Encoder with Graph Attention Aggregator Recommendation (TEGAARec), which includes the TEGAA module and the GAT-based social aggregation module. The TEGAA module captures and merges both long-term and short-term interests for target users and LMP users. Concurrently, the GAT-based social aggregation module is designed to aggregate the target users' dynamic interests and social influence in a weighted manner. Extensive experiments on four real-world datasets demonstrate the efficacy and superiority of our proposed model and ablation studies are done to illustrate the contributions of each component in TEGAARec.
Abstract:The automatic classification of animal sounds presents an enduring challenge in bioacoustics, owing to the diverse statistical properties of sound signals, variations in recording equipment, and prevalent low Signal-to-Noise Ratio (SNR) conditions. Deep learning models like Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) have excelled in human speech recognition but have not been effectively tailored to the intricate nature of animal sounds, which exhibit substantial diversity even within the same domain. We propose an automated classification framework applicable to general animal sound classification. Our approach first optimizes audio features from Mel-frequency cepstral coefficients (MFCC) including feature rearrangement and feature reduction. It then uses the optimized features for the deep learning model, i.e., an attention-based Bidirectional LSTM (Bi-LSTM), to extract deep semantic features for sound classification. We also contribute an animal sound benchmark dataset encompassing oceanic animals and birds1. Extensive experimentation with real-world datasets demonstrates that our approach consistently outperforms baseline methods by over 25% in precision, recall, and accuracy, promising advancements in animal sound classification.