Abstract:Semi-supervised heterogeneous domain adaptation (SHDA) addresses learning across domains with distinct feature representations and distributions, where source samples are labeled while most target samples are unlabeled, with only a small fraction labeled. Moreover, there is no one-to-one correspondence between source and target samples. Although various SHDA methods have been developed to tackle this problem, the nature of the knowledge transferred across heterogeneous domains remains unclear. This paper delves into this question from an empirical perspective. We conduct extensive experiments on about 330 SHDA tasks, employing two supervised learning methods and seven representative SHDA methods. Surprisingly, our observations indicate that both the category and feature information of source samples do not significantly impact the performance of the target domain. Additionally, noise drawn from simple distributions, when used as source samples, may contain transferable knowledge. Based on this insight, we perform a series of experiments to uncover the underlying principles of transferable knowledge in SHDA. Specifically, we design a unified Knowledge Transfer Framework (KTF) for SHDA. Based on the KTF, we find that the transferable knowledge in SHDA primarily stems from the transferability and discriminability of the source domain. Consequently, ensuring those properties in source samples, regardless of their origin (e.g., image, text, noise), can enhance the effectiveness of knowledge transfer in SHDA tasks. The codes and datasets are available at https://github.com/yyyaoyuan/SHDA.
Abstract:With the rapid growth of interdisciplinary demands for geospatial modeling and the rise of large language models (LLMs), geospatial code generation technology has seen significant advancements. However, existing LLMs often face challenges in the geospatial code generation process due to incomplete or unclear user requirements and insufficient knowledge of specific platform syntax rules, leading to the generation of non-executable code, a phenomenon known as "code hallucination." To address this issue, this paper proposes a Chain of Programming (CoP) framework, which decomposes the code generation process into five steps: requirement analysis, algorithm design, code implementation, code debugging, and code annotation. The framework incorporates a shared information pool, knowledge base retrieval, and user feedback mechanisms, forming an end-to-end code generation flow from requirements to code without the need for model fine-tuning. Based on a geospatial problem classification framework and evaluation benchmarks, the CoP strategy significantly improves the logical clarity, syntactical correctness, and executability of the generated code, with improvements ranging from 3.0% to 48.8%. Comparative and ablation experiments further validate the superiority of the CoP strategy over other optimization approaches and confirm the rationality and necessity of its key components. Through case studies on building data visualization and fire data analysis, this paper demonstrates the application and effectiveness of CoP in various geospatial scenarios. The CoP framework offers a systematic, step-by-step approach to LLM-based geospatial code generation tasks, significantly enhancing code generation performance in geospatial tasks and providing valuable insights for code generation in other vertical domains.