Abstract:Large-scale generative models have shown impressive image-generation capabilities, propelled by massive data. However, this often inadvertently leads to the generation of harmful or inappropriate content and raises copyright concerns. Driven by these concerns, machine unlearning has become crucial to effectively purge undesirable knowledge from models. While existing literature has studied various unlearning techniques, these often suffer from either poor unlearning quality or degradation in text-image alignment after unlearning, due to the competitive nature of these objectives. To address these challenges, we propose a framework that seeks an optimal model update at each unlearning iteration, ensuring monotonic improvement on both objectives. We further derive the characterization of such an update. In addition, we design procedures to strategically diversify the unlearning and remaining datasets to boost performance improvement. Our evaluation demonstrates that our method effectively removes target classes from recent diffusion-based generative models and concepts from stable diffusion models while maintaining close alignment with the models' original trained states, thus outperforming state-of-the-art baselines. Our code will be made available at \url{https://github.com/reds-lab/Restricted_gradient_diversity_unlearning.git}.
Abstract:Large Language Models (LLMs) have become integral to numerous domains, significantly advancing applications in data management, mining, and analysis. Their profound capabilities in processing and interpreting complex language data, however, bring to light pressing concerns regarding data privacy, especially the risk of unintentional training data leakage. Despite the critical nature of this issue, there has been no existing literature to offer a comprehensive assessment of data privacy risks in LLMs. Addressing this gap, our paper introduces LLM-PBE, a toolkit crafted specifically for the systematic evaluation of data privacy risks in LLMs. LLM-PBE is designed to analyze privacy across the entire lifecycle of LLMs, incorporating diverse attack and defense strategies, and handling various data types and metrics. Through detailed experimentation with multiple LLMs, LLM-PBE facilitates an in-depth exploration of data privacy concerns, shedding light on influential factors such as model size, data characteristics, and evolving temporal dimensions. This study not only enriches the understanding of privacy issues in LLMs but also serves as a vital resource for future research in the field. Aimed at enhancing the breadth of knowledge in this area, the findings, resources, and our full technical report are made available at https://llm-pbe.github.io/, providing an open platform for academic and practical advancements in LLM privacy assessment.
Abstract:The rapid advancement of large language models (LLMs) has catalyzed the deployment of LLM-powered agents across numerous applications, raising new concerns regarding their safety and trustworthiness. Existing methods for enhancing the safety of LLMs are not directly transferable to LLM-powered agents due to their diverse objectives and output modalities. In this paper, we propose GuardAgent, the first LLM agent as a guardrail to other LLM agents. Specifically, GuardAgent oversees a target LLM agent by checking whether its inputs/outputs satisfy a set of given guard requests defined by the users. GuardAgent comprises two steps: 1) creating a task plan by analyzing the provided guard requests, and 2) generating guardrail code based on the task plan and executing the code by calling APIs or using external engines. In both steps, an LLM is utilized as the core reasoning component, supplemented by in-context demonstrations retrieved from a memory module. Such knowledge-enabled reasoning allows GuardAgent to understand various textual guard requests and accurately "translate" them into executable code that provides reliable guardrails. Furthermore, GuardAgent is equipped with an extendable toolbox containing functions and APIs and requires no additional LLM training, which underscores its generalization capabilities and low operational overhead. Additionally, we propose two novel benchmarks: an EICU-AC benchmark for assessing privacy-related access control for healthcare agents and a Mind2Web-SC benchmark for safety evaluation for web agents. We show the effectiveness of GuardAgent on these two benchmarks with 98.7% and 90.0% accuracy in moderating invalid inputs and outputs for the two types of agents, respectively. We also show that GuardAgent is able to define novel functions in adaption to emergent LLM agents and guard requests, which underscores its strong generalization capabilities.
Abstract:Federated Learning (FL) is a privacy-preserving distributed learning approach that is rapidly developing in an era where privacy protection is increasingly valued. It is this rapid development trend, along with the continuous emergence of new demands for FL in the real world, that prompts us to focus on a very important problem: Federated Learning with New Knowledge. The primary challenge here is to effectively incorporate various new knowledge into existing FL systems and evolve these systems to reduce costs, extend their lifespan, and facilitate sustainable development. In this paper, we systematically define the main sources of new knowledge in FL, including new features, tasks, models, and algorithms. For each source, we thoroughly analyze and discuss how to incorporate new knowledge into existing FL systems and examine the impact of the form and timing of new knowledge arrival on the incorporation process. Furthermore, we comprehensively discuss the potential future directions for FL with new knowledge, considering a variety of factors such as scenario setups, efficiency, and security. There is also a continuously updating repository for this topic: https://github.com/conditionWang/FLNK.
Abstract:Federated Learning (FL) has emerged as a promising solution to perform deep learning on different data owners without exchanging raw data. However, non-IID data has been a key challenge in FL, which could significantly degrade the accuracy of the final model. Among different non-IID types, label skews have been challenging and common in image classification and other tasks. Instead of averaging the local models in most previous studies, we propose FedConcat, a simple and effective approach that concatenates these local models as the base of the global model to effectively aggregate the local knowledge. To reduce the size of the global model, we adopt the clustering technique to group the clients by their label distributions and collaboratively train a model inside each cluster. We theoretically analyze the advantage of concatenation over averaging by analyzing the information bottleneck of deep neural networks. Experimental results demonstrate that FedConcat achieves significantly higher accuracy than previous state-of-the-art FL methods in various heterogeneous label skew distribution settings and meanwhile has lower communication costs. Our code is publicly available at https://github.com/sjtudyq/FedConcat.
Abstract:Federated learning has emerged as a promising distributed learning paradigm that facilitates collaborative learning among multiple parties without transferring raw data. However, most existing federated learning studies focus on either horizontal or vertical data settings, where the data of different parties are assumed to be from the same feature or sample space. In practice, a common scenario is the hybrid data setting, where data from different parties may differ both in the features and samples. To address this, we propose HybridTree, a novel federated learning approach that enables federated tree learning on hybrid data. We observe the existence of consistent split rules in trees. With the help of these split rules, we theoretically show that the knowledge of parties can be incorporated into the lower layers of a tree. Based on our theoretical analysis, we propose a layer-level solution that does not need frequent communication traffic to train a tree. Our experiments demonstrate that HybridTree can achieve comparable accuracy to the centralized setting with low computational and communication overhead. HybridTree can achieve up to 8 times speedup compared with the other baselines.
Abstract:How to get insights from relational data streams in a timely manner is a hot research topic. This type of data stream can present unique challenges, such as distribution drifts, outliers, emerging classes, and changing features, which have recently been described as open environment challenges for machine learning. While existing studies have been done on incremental learning for data streams, their evaluations are mostly conducted with manually partitioned datasets. Thus, a natural question is how those open environment challenges look like in real-world relational data streams and how existing incremental learning algorithms perform on real datasets. To fill this gap, we develop an Open Environment Benchmark named OEBench to evaluate open environment challenges in relational data streams. Specifically, we investigate 55 real-world relational data streams and establish that open environment scenarios are indeed widespread in real-world datasets, which presents significant challenges for stream learning algorithms. Through benchmarks with existing incremental learning algorithms, we find that increased data quantity may not consistently enhance the model accuracy when applied in open environment scenarios, where machine learning models can be significantly compromised by missing values, distribution shifts, or anomalies in real-world data streams. The current techniques are insufficient in effectively mitigating these challenges posed by open environments. More researches are needed to address real-world open environment challenges. All datasets and code are open-sourced in https://github.com/sjtudyq/OEBench.
Abstract:As the prevalence of data analysis grows, safeguarding data privacy has become a paramount concern. Consequently, there has been an upsurge in the development of mechanisms aimed at privacy-preserving data analyses. However, these approaches are task-specific; designing algorithms for new tasks is a cumbersome process. As an alternative, one can create synthetic data that is (ideally) devoid of private information. This paper focuses on privacy-preserving data synthesis (PPDS) by providing a comprehensive overview, analysis, and discussion of the field. Specifically, we put forth a master recipe that unifies two prominent strands of research in PPDS: statistical methods and deep learning (DL)-based methods. Under the master recipe, we further dissect the statistical methods into choices of modeling and representation, and investigate the DL-based methods by different generative modeling principles. To consolidate our findings, we provide comprehensive reference tables, distill key takeaways, and identify open problems in the existing literature. In doing so, we aim to answer the following questions: What are the design principles behind different PPDS methods? How can we categorize these methods, and what are the advantages and disadvantages associated with each category? Can we provide guidelines for method selection in different real-world scenarios? We proceed to benchmark several prominent DL-based methods on the task of private image synthesis and conclude that DP-MERF is an all-purpose approach. Finally, upon systematizing the work over the past decade, we identify future directions and call for actions from researchers.
Abstract:As societal concerns on data privacy recently increase, we have witnessed data silos among multiple parties in various applications. Federated learning emerges as a new learning paradigm that enables multiple parties to collaboratively train a machine learning model without sharing their raw data. Vertical federated learning, where each party owns different features of the same set of samples and only a single party has the label, is an important and challenging topic in federated learning. Communication costs among different parties have been a major hurdle for practical vertical learning systems. In this paper, we propose a novel communication-efficient vertical federated learning algorithm named FedOnce, which requires only one-shot communication among parties. To improve model accuracy and provide privacy guarantee, FedOnce features unsupervised learning representations in the federated setting and privacy-preserving techniques based on moments accountant. The comprehensive experiments on 10 datasets demonstrate that FedOnce achieves close performance compared to state-of-the-art vertical federated learning algorithms with much lower communication costs. Meanwhile, our privacy-preserving technique significantly outperforms the state-of-the-art approaches under the same privacy budget.
Abstract:Federated Learning (FL) has become a practical and popular paradigm in machine learning. However, currently, there is no systematic solution that covers diverse use cases. Practitioners often face the challenge of how to select a matching FL framework for their use case. In this work, we present UniFed, the first unified benchmark for standardized evaluation of the existing open-source FL frameworks. With 15 evaluation scenarios, we present both qualitative and quantitative evaluation results of nine existing popular open-sourced FL frameworks, from the perspectives of functionality, usability, and system performance. We also provide suggestions on framework selection based on the benchmark conclusions and point out future improvement directions.