Abstract:How can we attribute the behaviors of machine learning models to their training data? While the classic influence function sheds light on the impact of individual samples, it often fails to capture the more complex and pronounced collective influence of a set of samples. To tackle this challenge, we study the Most Influential Subset Selection (MISS) problem, which aims to identify a subset of training samples with the greatest collective influence. We conduct a comprehensive analysis of the prevailing approaches in MISS, elucidating their strengths and weaknesses. Our findings reveal that influence-based greedy heuristics, a dominant class of algorithms in MISS, can provably fail even in linear regression. We delineate the failure modes, including the errors of influence function and the non-additive structure of the collective influence. Conversely, we demonstrate that an adaptive version of these heuristics which applies them iteratively, can effectively capture the interactions among samples and thus partially address the issues. Experiments on real-world datasets corroborate these theoretical findings, and further demonstrate that the merit of adaptivity can extend to more complex scenarios such as classification tasks and non-linear neural networks. We conclude our analysis by emphasizing the inherent trade-off between performance and computational efficiency, questioning the use of additive metrics such as the linear datamodeling score, and offering a range of discussions.
Abstract:Model merging offers an effective strategy to combine the strengths of multiple finetuned models into a unified model that preserves the specialized capabilities of each. Existing methods merge models in a global manner, performing arithmetic operations across all model parameters. However, such global merging often leads to task interference, degrading the performance of the merged model. In this work, we introduce Localize-and-Stitch, a novel approach that merges models in a localized way. Our algorithm works in two steps: i) Localization: identify tiny ($1\%$ of the total parameters) localized regions in the finetuned models containing essential skills for the downstream tasks, and ii) Stitching: reintegrate only these essential regions back into the pretrained model for task synergy. We demonstrate that our approach effectively locates sparse regions responsible for finetuned performance, and the localized regions could be treated as compact and interpretable representations of the finetuned models (tasks). Empirically, we evaluate our method on various vision and language benchmarks, showing that it outperforms existing model merging methods under different data availability scenarios. Beyond strong empirical performance, our algorithm also facilitates model compression and preserves pretrained knowledge, enabling flexible and continual skill composition from multiple finetuned models with minimal storage and computational overhead. Our code is available at https://github.com/yifei-he/Localize-and-Stitch.
Abstract:To develop the next generation of intelligent LiDARs, we propose a novel framework of parallel LiDARs and construct a hardware prototype in our experimental platform, DAWN (Digital Artificial World for Natural). It emphasizes the tight integration of physical and digital space in LiDAR systems, with networking being one of its supported core features. In the context of autonomous driving, V2V (Vehicle-to-Vehicle) technology enables efficient information sharing between different agents which significantly promotes the development of LiDAR networks. However, current research operates under an ideal situation where all vehicles are equipped with identical LiDAR, ignoring the diversity of LiDAR categories and operating frequencies. In this paper, we first utilize OpenCDA and RLS (Realistic LiDAR Simulation) to construct a novel heterogeneous LiDAR dataset named OPV2V-HPL. Additionally, we present HPL-ViT, a pioneering architecture designed for robust feature fusion in heterogeneous and dynamic scenarios. It uses a graph-attention Transformer to extract domain-specific features for each agent, coupled with a cross-attention mechanism for the final fusion. Extensive experiments on OPV2V-HPL demonstrate that HPL-ViT achieves SOTA (state-of-the-art) performance in all settings and exhibits outstanding generalization capabilities.
Abstract:Linear scalarization, i.e., combining all loss functions by a weighted sum, has been the default choice in the literature of multi-task learning (MTL) since its inception. In recent years, there is a surge of interest in developing Specialized Multi-Task Optimizers (SMTOs) that treat MTL as a multi-objective optimization problem. However, it remains open whether there is a fundamental advantage of SMTOs over scalarization. In fact, heated debates exist in the community comparing these two types of algorithms, mostly from an empirical perspective. To approach the above question, in this paper, we revisit scalarization from a theoretical perspective. We focus on linear MTL models and study whether scalarization is capable of fully exploring the Pareto front. Our findings reveal that, in contrast to recent works that claimed empirical advantages of scalarization, scalarization is inherently incapable of full exploration, especially for those Pareto optimal solutions that strike the balanced trade-offs between multiple tasks. More concretely, when the model is under-parametrized, we reveal a multi-surface structure of the feasible region and identify necessary and sufficient conditions for full exploration. This leads to the conclusion that scalarization is in general incapable of tracing out the Pareto front. Our theoretical results partially answer the open questions in Xin et al. (2021), and provide a more intuitive explanation on why scalarization fails beyond non-convexity. We additionally perform experiments on a real-world dataset using both scalarization and state-of-the-art SMTOs. The experimental results not only corroborate our theoretical findings, but also unveil the potential of SMTOs in finding balanced solutions, which cannot be achieved by scalarization.
Abstract:As the prevalence of data analysis grows, safeguarding data privacy has become a paramount concern. Consequently, there has been an upsurge in the development of mechanisms aimed at privacy-preserving data analyses. However, these approaches are task-specific; designing algorithms for new tasks is a cumbersome process. As an alternative, one can create synthetic data that is (ideally) devoid of private information. This paper focuses on privacy-preserving data synthesis (PPDS) by providing a comprehensive overview, analysis, and discussion of the field. Specifically, we put forth a master recipe that unifies two prominent strands of research in PPDS: statistical methods and deep learning (DL)-based methods. Under the master recipe, we further dissect the statistical methods into choices of modeling and representation, and investigate the DL-based methods by different generative modeling principles. To consolidate our findings, we provide comprehensive reference tables, distill key takeaways, and identify open problems in the existing literature. In doing so, we aim to answer the following questions: What are the design principles behind different PPDS methods? How can we categorize these methods, and what are the advantages and disadvantages associated with each category? Can we provide guidelines for method selection in different real-world scenarios? We proceed to benchmark several prominent DL-based methods on the task of private image synthesis and conclude that DP-MERF is an all-purpose approach. Finally, upon systematizing the work over the past decade, we identify future directions and call for actions from researchers.
Abstract:While it has long been empirically observed that adversarial robustness may be at odds with standard accuracy and may have further disparate impacts on different classes, it remains an open question to what extent such observations hold and how the class imbalance plays a role within. In this paper, we attempt to understand this question of accuracy disparity by taking a closer look at linear classifiers under a Gaussian mixture model. We decompose the impact of adversarial robustness into two parts: an inherent effect that will degrade the standard accuracy on all classes, and the other caused by the class imbalance ratio, which will increase the accuracy disparity compared to standard training. Furthermore, we also extend our model to the general family of stable distributions. We demonstrate that while the constraint of adversarial robustness consistently degrades the standard accuracy in the balanced class setting, the class imbalance ratio plays a fundamentally different role in accuracy disparity compared to the Gaussian case, due to the heavy tail of the stable distribution. We additionally perform experiments on both synthetic and real-world datasets. The empirical results not only corroborate our theoretical findings, but also suggest that the implications may extend to nonlinear models over real-world datasets.
Abstract:We consider vertical logistic regression (VLR) trained with mini-batch gradient descent -- a setting which has attracted growing interest among industries and proven to be useful in a wide range of applications including finance and medical research. We provide a comprehensive and rigorous privacy analysis of VLR in a class of open-source Federated Learning frameworks, where the protocols might differ between one another, yet a procedure of obtaining local gradients is implicitly shared. We first consider the honest-but-curious threat model, in which the detailed implementation of protocol is neglected and only the shared procedure is assumed, which we abstract as an oracle. We find that even under this general setting, single-dimension feature and label can still be recovered from the other party under suitable constraints of batch size, thus demonstrating the potential vulnerability of all frameworks following the same philosophy. Then we look into a popular instantiation of the protocol based on Homomorphic Encryption (HE). We propose an active attack that significantly weaken the constraints on batch size in the previous analysis via generating and compressing auxiliary ciphertext. To address the privacy leakage within the HE-based protocol, we develop a simple-yet-effective countermeasure based on Differential Privacy (DP), and provide both utility and privacy guarantees for the updated algorithm. Finally, we empirically verify the effectiveness of our attack and defense on benchmark datasets. Altogether, our findings suggest that all vertical federated learning frameworks that solely depend on HE might contain severe privacy risks, and DP, which has already demonstrated its power in horizontal federated learning, can also play a crucial role in the vertical setting, especially when coupled with HE or secure multi-party computation (MPC) techniques.
Abstract:We show that the simplest actor-critic method -- a linear softmax policy updated with TD through interaction with a linear MDP, but featuring no explicit regularization or exploration -- does not merely find an optimal policy, but moreover prefers high entropy optimal policies. To demonstrate the strength of this bias, the algorithm not only has no regularization, no projections, and no exploration like $\epsilon$-greedy, but is moreover trained on a single trajectory with no resets. The key consequence of the high entropy bias is that uniform mixing assumptions on the MDP, which exist in some form in all prior work, can be dropped: the implicit regularization of the high entropy bias is enough to ensure that all chains mix and an optimal policy is reached with high probability. As auxiliary contributions, this work decouples concerns between the actor and critic by writing the actor update as an explicit mirror descent, provides tools to uniformly bound mixing times within KL balls of policy space, and provides a projection-free TD analysis with its own implicit bias which can be run from an unmixed starting distribution.
Abstract:In the Mixup training paradigm, a model is trained using convex combinations of data points and their associated labels. Despite seeing very few true data points during training, models trained using Mixup seem to still minimize the original empirical risk and exhibit better generalization and robustness on various tasks when compared to standard training. In this paper, we investigate how these benefits of Mixup training rely on properties of the data in the context of classification. For minimizing the original empirical risk, we compute a closed form for the Mixup-optimal classification, which allows us to construct a simple dataset on which minimizing the Mixup loss can provably lead to learning a classifier that does not minimize the empirical loss on the data. On the other hand, we also give sufficient conditions for Mixup training to also minimize the original empirical risk. For generalization, we characterize the margin of a Mixup classifier, and use this to understand why the decision boundary of a Mixup classifier can adapt better to the full structure of the training data when compared to standard training. In contrast, we also show that, for a large class of linear models and linearly separable datasets, Mixup training leads to learning the same classifier as standard training.
Abstract:In this paper, we try to uncover the second-order essence of several first-order optimization methods. For Nesterov Accelerated Gradient, we rigorously prove that the algorithm makes use of the difference between past and current gradients, thus approximates the Hessian and accelerates the training. For adaptive methods, we related Adam and Adagrad to a powerful technique in computation statistics---Natural Gradient Descent. These adaptive methods can in fact be treated as relaxations of NGD with only a slight difference lying in the square root of the denominator in the update rules. Skeptical about the effect of such difference, we design a new algorithm---AdaSqrt, which removes the square root in the denominator and scales the learning rate by sqrt(T). Surprisingly, our new algorithm is comparable to various first-order methods(such as SGD and Adam) on MNIST and even beats Adam on CIFAR-10! This phenomenon casts doubt on the convention view that the square root is crucial and training without it will lead to terrible performance. As far as we have concerned, so long as the algorithm tries to explore second or even higher information of the loss surface, then proper scaling of the learning rate alone will guarantee fast training and good generalization performance. To the best of our knowledge, this is the first paper that seriously considers the necessity of square root among all adaptive methods. We believe that our work can shed light on the importance of higher-order information and inspire the design of more powerful algorithms in the future.