Abstract:Influence functions and related data attribution scores take the form of $g^{\top}F^{-1}g^{\prime}$, where $F\succeq 0$ is a curvature operator. In modern overparametrized models, forming or inverting $F\in\mathbb{R}^{d\times d}$ is prohibitive, motivating scalable influence computation via random projection with a sketch $P \in \mathbb{R}^{m\times d}$. This practice is commonly justified via the Johnson--Lindenstrauss (JL) lemma, which ensures approximate preservation of Euclidean geometry for a fixed dataset. However, JL does not address how sketching behaves under inversion. Furthermore, there is no existing theory that explains how sketching interacts with other widely-used techniques, such as ridge regularization and structured curvature approximations. We develop a unified theory characterizing when projection provably preserves influence functions. When $g,g^{\prime}\in\text{range}(F)$, we show that: 1) Unregularized projection: exact preservation holds iff $P$ is injective on $\text{range}(F)$, which necessitates $m\geq \text{rank}(F)$; 2) Regularized projection: ridge regularization fundamentally alters the sketching barrier, with approximation guarantees governed by the effective dimension of $F$ at the regularization scale; 3) Factorized influence: for Kronecker-factored curvatures $F=A\otimes E$, the guarantees continue to hold for decoupled sketches $P=P_A\otimes P_E$, even though such sketches exhibit row correlations that violate i.i.d. assumptions. Beyond this range-restricted setting, we analyze out-of-range test gradients and quantify a leakage term that arises when test gradients have components in $\ker(F)$. This yields guarantees for influence queries on general test points. Overall, this work develops a novel theory that characterizes when projection provably preserves influence and provides principled guidance for choosing the sketch size in practice.
Abstract:Deep learning has revolutionized modern society but faces growing energy and latency constraints. Deep physical neural networks (PNNs) are interconnected computing systems that directly exploit analog dynamics for energy-efficient, ultrafast AI execution. Realizing this potential, however, requires universal training methods tailored to physical intricacies. Here, we present the Physical Information Bottleneck (PIB), a general and efficient framework that integrates information theory and local learning, enabling deep PNNs to learn under arbitrary physical dynamics. By allocating matrix-based information bottlenecks to each unit, we demonstrate supervised, unsupervised, and reinforcement learning across electronic memristive chips and optical computing platforms. PIB also adapts to severe hardware faults and allows for parallel training via geographically distributed resources. Bypassing auxiliary digital models and contrastive measurements, PIB recasts PNN training as an intrinsic, scalable information-theoretic process compatible with diverse physical substrates.
Abstract:Standard Operating Procedures (SOPs) are critical for enterprise operations, yet existing language models struggle with SOP understanding and cross-domain generalization. Current methods fail because joint training cannot differentiate between reasoning capabilities that SOP requires: terminology precision, sequential ordering, and constraint reasoning. We propose FM SO.P, solving these challenges through two novelties. First, we introduce progressive task mixtures that build capabilities by stages across three task types with cumulative data: concept disambiguation for terminology precision, action sequence understanding for procedural correctness, and scenario-aware graph reasoning for conditional logic. Second, we propose an automatic multi-agent evaluation system consisting of three agents that adaptively generate rubrics, stratified test sets, and rubric scoring, adapting to domains (e.g., temporal constraints for DMV, regulatory compliance for banking). Evaluated on SOPBench across seven domains (Bank, DMV, Healthcare, Market, University, Library, Hotel), FM SO.P achieves 48.3\% pass rate with our 32B model and 34.3\% with our opensource 7B model, matching Qwen-2.5-72B-Instruct baseline (34.4\%) with 10x fewer parameters.
Abstract:Lifelong learning is critical for embodied agents in open-world environments, where reinforcement learning fine-tuning has emerged as an important paradigm to enable Vision-Language-Action (VLA) models to master dexterous manipulation through environmental interaction. Thus, Continual Reinforcement Learning (CRL) is a promising pathway for deploying VLA models in lifelong robotic scenarios, yet balancing stability (retaining old skills) and plasticity (learning new ones) remains a formidable challenge for existing methods. We introduce CRL-VLA, a framework for continual post-training of VLA models with rigorous theoretical bounds. We derive a unified performance bound linking the stability-plasticity trade-off to goal-conditioned advantage magnitude, scaled by policy divergence. CRL-VLA resolves this dilemma via asymmetric regulation: constraining advantage magnitudes on prior tasks while enabling controlled growth on new tasks. This is realized through a simple but effective dual-critic architecture with novel Goal-Conditioned Value Formulation (GCVF), where a frozen critic anchors semantic consistency and a trainable estimator drives adaptation. Experiments on the LIBERO benchmark demonstrate that CRL-VLA effectively harmonizes these conflicting objectives, outperforming baselines in both anti-forgetting and forward adaptation.
Abstract:Movie dubbing is the task of synthesizing speech from scripts conditioned on video scenes, requiring accurate lip sync, faithful timbre transfer, and proper modeling of character identity and emotion. However, existing methods face two major limitations: (1) high-quality multimodal dubbing datasets are limited in scale, suffer from high word error rates, contain sparse annotations, rely on costly manual labeling, and are restricted to monologue scenes, all of which hinder effective model training; (2) existing dubbing models rely solely on the lip region to learn audio-visual alignment, which limits their applicability to complex live-action cinematic scenes, and exhibit suboptimal performance in lip sync, speech quality, and emotional expressiveness. To address these issues, we propose FunCineForge, which comprises an end-to-end production pipeline for large-scale dubbing datasets and an MLLM-based dubbing model designed for diverse cinematic scenes. Using the pipeline, we construct the first Chinese television dubbing dataset with rich annotations, and demonstrate the high quality of these data. Experiments across monologue, narration, dialogue, and multi-speaker scenes show that our dubbing model consistently outperforms SOTA methods in audio quality, lip sync, timbre transfer, and instruction following. Code and demos are available at https://anonymous.4open.science/w/FunCineForge.
Abstract:Recent advances in vision, language, and multimodal learning have substantially accelerated progress in robotic foundation models, with robot manipulation remaining a central and challenging problem. This survey examines robot manipulation from an algorithmic perspective and organizes recent learning-based approaches within a unified abstraction of high-level planning and low-level control. At the high level, we extend the classical notion of task planning to include reasoning over language, code, motion, affordances, and 3D representations, emphasizing their role in structured and long-horizon decision making. At the low level, we propose a training-paradigm-oriented taxonomy for learning-based control, organizing existing methods along input modeling, latent representation learning, and policy learning. Finally, we identify open challenges and prospective research directions related to scalability, data efficiency, multimodal physical interaction, and safety. Together, these analyses aim to clarify the design space of modern foundation models for robotic manipulation.
Abstract:Large language models (LLMs) are increasingly deployed under the Model-as-a-Service (MaaS) paradigm. To meet stringent quality-of-service (QoS) requirements, existing LLM serving systems disaggregate the prefill and decode phases of inference. However, decode instances often experience low GPU utilization due to their memory-bound nature and insufficient batching in dynamic workloads, leaving compute resources underutilized. We introduce Harli, a serving system that improves GPU utilization by co-locating parameter-efficient finetuning (PEFT) tasks with LLM decode instances. PEFT tasks are compute-bound and memory-efficient, making them ideal candidates for safe co-location. Specifically, Harli addresses key challenges--limited memory and unpredictable interference--using three components: a unified memory allocator for runtime memory reuse, a two-stage latency predictor for decode latency modeling, and a QoS-guaranteed throughput-maximizing scheduler for throughput maximization. Experimental results show that Harli improves the finetune throughput by 46.2% on average (up to 92.0%) over state-of-the-art serving systems, while maintaining strict QoS guarantees for inference decode.
Abstract:Leave-One-Out (LOO) provides an intuitive measure of feature importance but is computationally prohibitive. While Layer-Wise Relevance Propagation (LRP) offers a potentially efficient alternative, its axiomatic soundness in modern Transformers remains largely under-examined. In this work, we first show that the bilinear propagation rules used in recent advances of AttnLRP violate the implementation invariance axiom. We prove this analytically and confirm it empirically in linear attention layers. Second, we also revisit CP-LRP as a diagnostic baseline and find that bypassing relevance propagation through the softmax layer -- backpropagating relevance only through the value matrices -- significantly improves alignment with LOO, particularly in middle-to-late Transformer layers. Overall, our results suggest that (i) bilinear factorization sensitivity and (ii) softmax propagation error potentially jointly undermine LRP's ability to approximate LOO in Transformers.
Abstract:This work introduces MELA-TTS, a novel joint transformer-diffusion framework for end-to-end text-to-speech synthesis. By autoregressively generating continuous mel-spectrogram frames from linguistic and speaker conditions, our architecture eliminates the need for speech tokenization and multi-stage processing pipelines. To address the inherent difficulties of modeling continuous features, we propose a representation alignment module that aligns output representations of the transformer decoder with semantic embeddings from a pretrained ASR encoder during training. This mechanism not only speeds up training convergence, but also enhances cross-modal coherence between the textual and acoustic domains. Comprehensive experiments demonstrate that MELA-TTS achieves state-of-the-art performance across multiple evaluation metrics while maintaining robust zero-shot voice cloning capabilities, in both offline and streaming synthesis modes. Our results establish a new benchmark for continuous feature generation approaches in TTS, offering a compelling alternative to discrete-token-based paradigms.




Abstract:In recent years, automatic speech recognition (ASR) has witnessed transformative advancements driven by three complementary paradigms: data scaling, model size scaling, and deep integration with large language models (LLMs). However, LLMs are prone to hallucination, which can significantly degrade user experience in real-world ASR applications. In this paper, we present FunAudio-ASR, a large-scale, LLM-based ASR system that synergistically combines massive data, large model capacity, LLM integration, and reinforcement learning to achieve state-of-the-art performance across diverse and complex speech recognition scenarios. Moreover, FunAudio-ASR is specifically optimized for practical deployment, with enhancements in streaming capability, noise robustness, code-switching, hotword customization, and satisfying other real-world application requirements. Experimental results show that while most LLM-based ASR systems achieve strong performance on open-source benchmarks, they often underperform on real industry evaluation sets. Thanks to production-oriented optimizations, FunAudio-ASR achieves SOTA performance on real application datasets, demonstrating its effectiveness and robustness in practical settings.