Abstract:For the task of hanging clothes, learning how to insert a hanger into a garment is crucial but has been seldom explored in robotics. In this work, we address the problem of inserting a hanger into various unseen garments that are initially laid out flat on a table. This task is challenging due to its long-horizon nature, the high degrees of freedom of the garments, and the lack of data. To simplify the learning process, we first propose breaking the task into several stages. Then, we formulate each stage as a policy learning problem and propose low-dimensional action parameterization. To overcome the challenge of limited data, we build our own simulator and create 144 synthetic clothing assets to effectively collect high-quality training data. Our approach uses single-view depth images and object masks as input, which mitigates the Sim2Real appearance gap and achieves high generalization capabilities for new garments. Extensive experiments in both simulation and the real world validate our proposed method. By training on various garments in the simulator, our method achieves a 75\% success rate with 8 different unseen garments in the real world.
Abstract:Embedding models have become essential tools in both natural language processing and computer vision, enabling efficient semantic search, recommendation, clustering, and more. However, the high memory and computational demands of full-precision embeddings pose challenges for deployment in resource-constrained environments, such as real-time recommendation systems. In this work, we propose a novel finetuning framework to ternary-weight embedding models, which reduces memory and computational overhead while maintaining high performance. To apply ternarization to pre-trained embedding models, we introduce self-taught knowledge distillation to finalize the ternary-weights of the linear layers. With extensive experiments on public text and vision datasets, we demonstrated that without sacrificing effectiveness, the ternarized model consumes low memory usage and has low latency in the inference stage with great efficiency. In practical implementations, embedding models are typically integrated with Approximate Nearest Neighbor (ANN) search. Our experiments combining ternary embedding with ANN search yielded impressive improvement in both accuracy and computational efficiency. The repository is available at here.
Abstract:Topological Data Analysis (TDA) has recently gained significant attention in the field of financial prediction. However, the choice of point cloud construction methods, topological feature representations, and classification models has a substantial impact on prediction results. This paper addresses the classification problem of stock index movement. First, we construct point clouds for stock indices using three different methods. Next, we apply TDA to extract topological structures from the point clouds. Four distinct topological features are computed to represent the patterns in the data, and 15 combinations of these features are enumerated and input into six different machine learning models. We evaluate the predictive performance of various TDA configurations by conducting index movement classification tasks on datasets such as CSI, DAX, HSI and FTSE providing insights into the efficiency of different TDA setups.
Abstract:Grasping in cluttered scenes remains highly challenging for dexterous hands due to the scarcity of data. To address this problem, we present a large-scale synthetic benchmark, encompassing 1319 objects, 8270 scenes, and 427 million grasps. Beyond benchmarking, we also propose a novel two-stage grasping method that learns efficiently from data by using a diffusion model that conditions on local geometry. Our proposed generative method outperforms all baselines in simulation experiments. Furthermore, with the aid of test-time-depth restoration, our method demonstrates zero-shot sim-to-real transfer, attaining 90.7% real-world dexterous grasping success rate in cluttered scenes.
Abstract:Depth sensing is an important problem for 3D vision-based robotics. Yet, a real-world active stereo or ToF depth camera often produces noisy and incomplete depth which bottlenecks robot performances. In this work, we propose D3RoMa, a learning-based depth estimation framework on stereo image pairs that predicts clean and accurate depth in diverse indoor scenes, even in the most challenging scenarios with translucent or specular surfaces where classical depth sensing completely fails. Key to our method is that we unify depth estimation and restoration into an image-to-image translation problem by predicting the disparity map with a denoising diffusion probabilistic model. At inference time, we further incorporated a left-right consistency constraint as classifier guidance to the diffusion process. Our framework combines recently advanced learning-based approaches and geometric constraints from traditional stereo vision. For model training, we create a large scene-level synthetic dataset with diverse transparent and specular objects to compensate for existing tabletop datasets. The trained model can be directly applied to real-world in-the-wild scenes and achieve state-of-the-art performance in multiple public depth estimation benchmarks. Further experiments in real environments show that accurate depth prediction significantly improves robotic manipulation in various scenarios.
Abstract:Large language models exhibit aspects of human-level intelligence that catalyze their application as human-like agents in domains such as social simulations, human-machine interactions, and collaborative multi-agent systems. However, the absence of distinct personalities, such as displaying ingratiating behaviors, inconsistent opinions, and uniform response patterns, diminish LLMs utility in practical applications. Addressing this, the development of personality traits in LLMs emerges as a crucial area of research to unlock their latent potential. Existing methods to personify LLMs generally involve strategies like employing stylized training data for instruction tuning or using prompt engineering to simulate different personalities. These methods only capture superficial linguistic styles instead of the core of personalities and are therefore not stable. In this study, we propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development, into a comprehensive training methodology. We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality. Single-agent evaluation validates our method's superiority, as it produces responses more aligned with reference personalities compared to other approaches. Case studies for multi-agent communication highlight its benefits in enhancing opinion consistency within individual agents and fostering collaborative creativity among multiple agents in dialogue contexts, potentially benefiting human simulation and multi-agent cooperation. Additionally, human-agent interaction evaluations indicate that our personified models significantly enhance interactive experiences, underscoring the practical implications of our research.
Abstract:We present a novel multimodal preference dataset for creative tasks, consisting of over 250 million human ratings on more than 2.2 million captions, collected through crowdsourcing rating data for The New Yorker's weekly cartoon caption contest over the past eight years. This unique dataset supports the development and evaluation of multimodal large language models and preference-based fine-tuning algorithms for humorous caption generation. We propose novel benchmarks for judging the quality of model-generated captions, utilizing both GPT4 and human judgments to establish ranking-based evaluation strategies. Our experimental results highlight the limitations of current fine-tuning methods, such as RLHF and DPO, when applied to creative tasks. Furthermore, we demonstrate that even state-of-the-art models like GPT4 and Claude currently underperform top human contestants in generating humorous captions. As we conclude this extensive data collection effort, we release the entire preference dataset to the research community, fostering further advancements in AI humor generation and evaluation.
Abstract:Cross-Domain Few-shot Semantic Segmentation (CD-FSS) aims to train generalized models that can segment classes from different domains with a few labeled images. Previous works have proven the effectiveness of feature transformation in addressing CD-FSS. However, they completely rely on support images for feature transformation, and repeatedly utilizing a few support images for each class may easily lead to overfitting and overlooking intra-class appearance differences. In this paper, we propose a Doubly Matching Transformation-based Network (DMTNet) to solve the above issue. Instead of completely relying on support images, we propose Self-Matching Transformation (SMT) to construct query-specific transformation matrices based on query images themselves to transform domain-specific query features into domain-agnostic ones. Calculating query-specific transformation matrices can prevent overfitting, especially for the meta-testing stage where only one or several images are used as support images to segment hundreds or thousands of images. After obtaining domain-agnostic features, we exploit a Dual Hypercorrelation Construction (DHC) module to explore the hypercorrelations between the query image with the foreground and background of the support image, based on which foreground and background prediction maps are generated and supervised, respectively, to enhance the segmentation result. In addition, we propose a Test-time Self-Finetuning (TSF) strategy to more accurately self-tune the query prediction in unseen domains. Extensive experiments on four popular datasets show that DMTNet achieves superior performance over state-of-the-art approaches. Code is available at https://github.com/ChenJiayi68/DMTNet.
Abstract:With the advancement of video analysis technology, the multi-object tracking (MOT) problem in complex scenes involving pedestrians is gaining increasing importance. This challenge primarily involves two key tasks: pedestrian detection and re-identification. While significant progress has been achieved in pedestrian detection tasks in recent years, enhancing the effectiveness of re-identification tasks remains a persistent challenge. This difficulty arises from the large total number of pedestrian samples in multi-object tracking datasets and the scarcity of individual instance samples. Motivated by recent rapid advancements in meta-learning techniques, we introduce MAML MOT, a meta-learning-based training approach for multi-object tracking. This approach leverages the rapid learning capability of meta-learning to tackle the issue of sample scarcity in pedestrian re-identification tasks, aiming to improve the model's generalization performance and robustness. Experimental results demonstrate that the proposed method achieves high accuracy on mainstream datasets in the MOT Challenge. This offers new perspectives and solutions for research in the field of pedestrian multi-object tracking.
Abstract:As deep neural networks (DNNs) grow in complexity and size, the resultant increase in communication overhead during distributed training has become a significant bottleneck, challenging the scalability of distributed training systems. Existing solutions, while aiming to mitigate this bottleneck through worker-level compression and in-network aggregation, fall short due to their inability to efficiently reconcile the trade-offs between compression effectiveness and computational overhead, hindering overall performance and scalability. In this paper, we introduce a novel compression algorithm that effectively merges worker-level compression with in-network aggregation. Our solution is both homomorphic, allowing for efficient in-network aggregation without CPU/GPU processing, and lossless, ensuring no compromise on training accuracy. Theoretically optimal in compression and computational efficiency, our approach is empirically validated across diverse DNN models such as NCF, LSTM, VGG19, and BERT-base, showing up to a 6.33$\times$ improvement in aggregation throughput and a 3.74$\times$ increase in per-iteration training speed.