Abstract:Multi-channel EEG signals are commonly used for the diagnosis and assessment of diseases such as epilepsy. Currently, various EEG diagnostic algorithms based on deep learning have been developed. However, most research efforts focus solely on diagnosing and classifying current signal data but do not consider the prediction of future trends for early warning. Additionally, since multi-channel EEG can be essentially regarded as the spatio-temporal signal data received by detectors at different locations in the brain, how to construct spatio-temporal information representations of EEG signals to facilitate future trend prediction for multi-channel EEG becomes an important problem. This study proposes a multi-signal prediction algorithm based on generative diffusion models (EEG-DIF), which transforms the multi-signal forecasting task into an image completion task, allowing for comprehensive representation and learning of the spatio-temporal correlations and future developmental patterns of multi-channel EEG signals. Here, we employ a publicly available epilepsy EEG dataset to construct and validate the EEG-DIF. The results demonstrate that our method can accurately predict future trends for multi-channel EEG signals simultaneously. Furthermore, the early warning accuracy for epilepsy seizures based on the generated EEG data reaches 0.89. In general, EEG-DIF provides a novel approach for characterizing multi-channel EEG signals and an innovative early warning algorithm for epilepsy seizures, aiding in optimizing and enhancing the clinical diagnosis process. The code is available at https://github.com/JZK00/EEG-DIF.
Abstract:In an era marked by robust technological growth and swift information renewal, furnishing researchers and the populace with top-tier, avant-garde academic insights spanning various domains has become an urgent necessity. The KDD Cup 2024 AQA Challenge is geared towards advancing retrieval models to identify pertinent academic terminologies from suitable papers for scientific inquiries. This paper introduces the LLM-KnowSimFuser proposed by Robo Space, which wins the 2nd place in the competition. With inspirations drawed from the superior performance of LLMs on multiple tasks, after careful analysis of the provided datasets, we firstly perform fine-tuning and inference using LLM-enhanced pre-trained retrieval models to introduce the tremendous language understanding and open-domain knowledge of LLMs into this task, followed by a weighted fusion based on the similarity matrix derived from the inference results. Finally, experiments conducted on the competition datasets show the superiority of our proposal, which achieved a score of 0.20726 on the final leaderboard.
Abstract:The SoccerNet 2024 challenges represent the fourth annual video understanding challenges organized by the SoccerNet team. These challenges aim to advance research across multiple themes in football, including broadcast video understanding, field understanding, and player understanding. This year, the challenges encompass four vision-based tasks. (1) Ball Action Spotting, focusing on precisely localizing when and which soccer actions related to the ball occur, (2) Dense Video Captioning, focusing on describing the broadcast with natural language and anchored timestamps, (3) Multi-View Foul Recognition, a novel task focusing on analyzing multiple viewpoints of a potential foul incident to classify whether a foul occurred and assess its severity, (4) Game State Reconstruction, another novel task focusing on reconstructing the game state from broadcast videos onto a 2D top-view map of the field. Detailed information about the tasks, challenges, and leaderboards can be found at https://www.soccer-net.org, with baselines and development kits available at https://github.com/SoccerNet.
Abstract:In recent years, there has been a significant amount of research on algorithms and control methods for distributed collaborative robots. However, the emergence of collective behavior in a swarm is still difficult to predict and control. Nevertheless, human interaction with the swarm helps render the swarm more predictable and controllable, as human operators can utilize intuition or knowledge that is not always available to the swarm. Therefore, this paper designs the Dynamic Visualization Research Platform for Multimodal Human-Swarm Interaction (DVRP-MHSI), which is an innovative open system that can perform real-time dynamic visualization and is specifically designed to accommodate a multitude of interaction modalities (such as brain-computer, eye-tracking, electromyographic, and touch-based interfaces), thereby expediting progress in human-swarm interaction research. Specifically, the platform consists of custom-made low-cost omnidirectional wheeled mobile robots, multitouch screens and two workstations. In particular, the mutitouch screens can recognize human gestures and the shapes of objects placed on them, and they can also dynamically render diverse scenes. One of the workstations processes communication information within robots and the other one implements human-robot interaction methods. The development of DVRP-MHSI frees researchers from hardware or software details and allows them to focus on versatile swarm algorithms and human-swarm interaction methods without being limited to fixed scenarios, tasks, and interfaces. The effectiveness and potential of the platform for human-swarm interaction studies are validated by several demonstrative experiments.
Abstract:Early detection and accurate diagnosis can predict the risk of malignant disease transformation, thereby increasing the probability of effective treatment. A mild syndrome with small infected regions is an ominous warning and is foremost in the early diagnosis of diseases. Deep learning algorithms, such as convolutional neural networks (CNNs), have been used to segment natural or medical objects, showing promising results. However, analyzing medical objects of small areas in images remains a challenge due to information losses and compression defects caused by convolution and pooling operations in CNNs. These losses and defects become increasingly significant as the network deepens, particularly for small medical objects. To address these challenges, we propose a novel scale-variant attention-based network (SvANet) for accurate small-scale object segmentation in medical images. The SvANet consists of Monte Carlo attention, scale-variant attention, and vision transformer, which incorporates cross-scale features and alleviates compression artifacts for enhancing the discrimination of small medical objects. Quantitative experimental results demonstrate the superior performance of SvANet, achieving 96.12%, 96.11%, 89.79%, 84.15%, 80.25%, 73.05%, and 72.58% in mean Dice coefficient for segmenting kidney tumors, skin lesions, hepatic tumors, polyps, surgical excision cells, retinal vasculatures, and sperms, which occupy less than 1% of the image areas in KiTS23, ISIC 2018, ATLAS, PolypGen, TissueNet, FIVES, and SpermHealth datasets, respectively.
Abstract:Objective: Cortico-muscular communication patterns are instrumental in understanding movement control. Estimating significant causal relationships between motor cortex electroencephalogram (EEG) and surface electromyogram (sEMG) from concurrently active muscles presents a formidable challenge since the relevant processes underlying muscle control are typically weak in comparison to measurement noise and background activities. Methodology: In this paper, a novel framework is proposed to simultaneously estimate the order of the autoregressive model of cortico-muscular interactions along with the parameters while enforcing stationarity condition in a convex program to ensure global optimality. The proposed method is further extended to a non-convex program to account for the presence of measurement noise in the recorded signals by introducing a wavelet sparsity assumption on the excitation noise in the model. Results: The proposed methodology is validated using both simulated data and neurophysiological signals. In case of simulated data, the performance of the proposed methods has been compared with the benchmark approaches in terms of order identification, computational efficiency, and goodness of fit in relation to various noise levels. In case of physiological signals our proposed methods are compared against the state-of-the-art approaches in terms of the ability to detect Granger causality. Significance: The proposed methods are shown to be effective in handling stationarity and measurement noise assumptions, revealing significant causal interactions from brain to muscles and vice versa.
Abstract:Class-incremental learning (CIL) aims to train a model to learn new classes from non-stationary data streams without forgetting old ones. In this paper, we propose a new kind of connectionist model by tailoring neural unit dynamics that adapt the behavior of neural networks for CIL. In each training session, it introduces a supervisory mechanism to guide network expansion whose growth size is compactly commensurate with the intrinsic complexity of a newly arriving task. This constructs a near-minimal network while allowing the model to expand its capacity when cannot sufficiently hold new classes. At inference time, it automatically reactivates the required neural units to retrieve knowledge and leaves the remaining inactivated to prevent interference. We name our model AutoActivator, which is effective and scalable. To gain insights into the neural unit dynamics, we theoretically analyze the model's convergence property via a universal approximation theorem on learning sequential mappings, which is under-explored in the CIL community. Experiments show that our method achieves strong CIL performance in rehearsal-free and minimal-expansion settings with different backbones.
Abstract:This paper presents a new approach to the recovery of a spectrally sparse signal (SSS) from partially observed entries, focusing on challenges posed by large-scale data and heavy noise environments. The SSS reconstruction can be formulated as a non-convex low-rank Hankel recovery problem. Traditional formulations for SSS recovery often suffer from reconstruction inaccuracies due to unequally weighted norms and over-relaxation of the Hankel structure in noisy conditions. Moreover, a critical limitation of standard proximal gradient (PG) methods for solving the optimization problem is their slow convergence. We overcome this by introducing a more accurate formulation and a Low-rank Projected Proximal Gradient (LPPG) method, designed to efficiently converge to stationary points through a two-step process. The first step involves a modified PG approach, allowing for a constant step size independent of signal size, which significantly accelerates the gradient descent phase. The second step employs a subspace projection strategy, optimizing within a low-rank matrix space to further decrease the objective function. Both steps of the LPPG method are meticulously tailored to exploit the intrinsic low-rank and Hankel structures of the problem, thereby enhancing computational efficiency. Our numerical simulations reveal a substantial improvement in both the efficiency and recovery accuracy of the LPPG method compared to existing benchmark algorithms. This performance gain is particularly pronounced in scenarios with significant noise, demonstrating the method's robustness and applicability to large-scale SSS recovery tasks.
Abstract:We consider minimizing a function consisting of a quadratic term and a proximable term which is possibly nonconvex and nonsmooth. This problem is also known as scaled proximal operator. Despite its simple form, existing methods suffer from slow convergence or high implementation complexity or both. To overcome these limitations, we develop a fast and user-friendly second-order proximal algorithm. Key innovation involves building and solving a series of opportunistically majorized problems along a hybrid Newton direction. The approach directly uses the precise Hessian of the quadratic term, and calculates the inverse only once, eliminating the iterative numerical approximation of the Hessian, a common practice in quasi-Newton methods. The algorithm's convergence to a critical point is established, and local convergence rate is derived based on the Kurdyka-Lojasiewicz property of the objective function. Numerical comparisons are conducted on well-known optimization problems. The results demonstrate that the proposed algorithm not only achieves a faster convergence but also tends to converge to a better local optimum compare to benchmark algorithms.
Abstract:This paper investigates signal estimation in wireless transmission from the perspective of statistical machine learning, where the transmitted signals may be from an integrated sensing and communication system; that is, 1) signals may be not only discrete constellation points but also arbitrary complex values; 2) signals may be spatially correlated. Particular attention is paid to handling various uncertainties such as the uncertainty of the transmitting signal covariance, the uncertainty of the channel matrix, the uncertainty of the channel noise covariance, the existence of channel impulse noises (i.e., outliers), and the limited sample size of pilots. To proceed, a distributionally robust machine learning framework that is insensitive to the above uncertainties is proposed for beamforming (at the receiver) and estimation of wireless signals, which reveals that channel estimation is not a necessary operation. For optimal linear estimation, the proposed framework includes several existing beamformers as special cases such as diagonal loading and eigenvalue thresholding. For optimal nonlinear estimation, estimators are limited in reproducing kernel Hilbert spaces and neural network function spaces, and corresponding uncertainty-aware solutions (e.g., kernelized diagonal loading) are derived. In addition, we prove that the ridge and kernel ridge regression methods in machine learning are distributionally robust against diagonal perturbation in feature covariance.