Abstract:Agent-Based Model (ABM) validation is crucial as it helps ensuring the reliability of simulations, and causal discovery has become a powerful tool in this context. However, current causal discovery methods often face accuracy and robustness challenges when applied to complex and noisy time series data, which is typical in ABM scenarios. This study addresses these issues by proposing a Robust Cross-Validation (RCV) approach to enhance causal structure learning for ABM validation. We develop RCV-VarLiNGAM and RCV-PCMCI, novel extensions of two prominent causal discovery algorithms. These aim to reduce the impact of noise better and give more reliable causal relation results, even with high-dimensional, time-dependent data. The proposed approach is then integrated into an enhanced ABM validation framework, which is designed to handle diverse data and model structures. The approach is evaluated using synthetic datasets and a complex simulated fMRI dataset. The results demonstrate greater reliability in causal structure identification. The study examines how various characteristics of datasets affect the performance of established causal discovery methods. These characteristics include linearity, noise distribution, stationarity, and causal structure density. This analysis is then extended to the RCV method to see how it compares in these different situations. This examination helps confirm whether the results are consistent with existing literature and also reveals the strengths and weaknesses of the novel approaches. By tackling key methodological challenges, the study aims to enhance ABM validation with a more resilient valuation framework presented. These improvements increase the reliability of model-driven decision making processes in complex systems analysis.
Abstract:Causal discovery is designed to identify causal relationships in data, a task that has become increasingly complex due to the computational demands of traditional methods such as VarLiNGAM, which combines Vector Autoregressive Model with Linear Non-Gaussian Acyclic Model for time series data. This study is dedicated to optimising causal discovery specifically for time series data, which is common in practical applications. Time series causal discovery is particularly challenging due to the need to account for temporal dependencies and potential time lag effects. By designing a specialised dataset generator and reducing the computational complexity of the VarLiNGAM model from \( O(m^3 \cdot n) \) to \( O(m^3 + m^2 \cdot n) \), this study significantly improves the feasibility of processing large datasets. The proposed methods have been validated on advanced computational platforms and tested across simulated, real-world, and large-scale datasets, showcasing enhanced efficiency and performance. The optimised algorithm achieved 7 to 13 times speedup compared with the original algorithm and around 4.5 times speedup compared with the GPU-accelerated version on large-scale datasets with feature sizes between 200 and 400. Our methods aim to push the boundaries of current causal discovery capabilities, making them more robust, scalable, and applicable to real-world scenarios, thus facilitating breakthroughs in various fields such as healthcare and finance.
Abstract:Due to their complex spatial structure and diverse geometric features, achieving high-precision and robust point cloud registration for complex Die Castings has been a significant challenge in the die-casting industry. Existing point cloud registration methods primarily optimize network models using well-established high-quality datasets, often neglecting practical application in real scenarios. To address this gap, this paper proposes a high-precision adaptive registration method called Multiscale Efficient Deep Closest Point (MEDPNet) and introduces a die-casting point cloud dataset, DieCastCloud, specifically designed to tackle the challenges of point cloud registration in the die-casting industry. The MEDPNet method performs coarse die-casting point cloud data registration using the Efficient-DCP method, followed by precision registration using the Multiscale feature fusion dual-channel registration (MDR) method. We enhance the modeling capability and computational efficiency of the model by replacing the attention mechanism of the Transformer in DCP with Efficient Attention and implementing a collaborative scale mechanism through the combination of serial and parallel blocks. Additionally, we propose the MDR method, which utilizes multilayer perceptrons (MLP), Normal Distributions Transform (NDT), and Iterative Closest Point (ICP) to achieve learnable adaptive fusion, enabling high-precision, scalable, and noise-resistant global point cloud registration. Our proposed method demonstrates excellent performance compared to state-of-the-art geometric and learning-based registration methods when applied to complex die-casting point cloud data.
Abstract:This paper introduces a novel optimization framework for deep neural network (DNN) hardware accelerators, enabling the rapid development of customized and automated design flows. More specifically, our approach aims to automate the selection and configuration of low-level optimization techniques, encompassing DNN and FPGA low-level optimizations. We introduce novel optimization and transformation tasks for building design-flow architectures, which are highly customizable and flexible, thereby enhancing the performance and efficiency of DNN accelerators. Our results demonstrate considerable reductions of up to 92\% in DSP usage and 89\% in LUT usage for two networks, while maintaining accuracy and eliminating the need for human effort or domain expertise. In comparison to state-of-the-art approaches, our design achieves higher accuracy and utilizes three times fewer DSP resources, underscoring the advantages of our proposed framework.
Abstract:In this work, we present a hardware compatible neural network training algorithm in which we used alternating direction method of multipliers (ADMM) and iterative least-square methods. The motive behind this approach was to conduct a method of training neural networks that is scalable and can be parallelised. These characteristics make this algorithm suitable for hardware implementation. We have achieved 6.9\% and 6.8\% better accuracy comparing to SGD and Adam respectively, with a four-layer neural network with hidden size of 28 on HIGGS dataset. Likewise, we could observe 21.0\% and 2.2\% accuracy improvement comparing to SGD and Adam respectively, on IRIS dataset with a three-layer neural network with hidden size of 8. This is while the use of matrix inversion, which is challenging for hardware implementation, is avoided in this method. We assessed the impact of avoiding matrix inversion on ADMM accuracy and we observed that we can safely replace matrix inversion with iterative least-square methods and maintain the desired performance. Also, the computational complexity of the implemented method is polynomial regarding dimensions of the input dataset and hidden size of the network.
Abstract:In this project, we have successfully designed, implemented, deployed and tested a novel FPGA accelerated algorithm for neural network training. The algorithm itself was developed in an independent study option. This training method is based on Alternating Direction Method of Multipliers algorithm, which has strong parallel characteristics and avoids procedures such as matrix inversion that are problematic in hardware designs by employing LSMR. As an intermediate stage, we fully implemented the ADMM-LSMR method in C language for feed-forward neural networks with a flexible number of layers and hidden size. We demonstrated that the method can operate with fixed-point arithmetic without compromising the accuracy. Next, we devised an FPGA accelerated version of the algorithm using Intel FPGA SDK for OpenCL and performed extensive optimisation stages followed by successful deployment of the program on an Intel Arria 10 GX FPGA. The FPGA accelerated program showed up to 6 times speed up comparing to equivalent CPU implementation while achieving promising accuracy.