In this project, we have successfully designed, implemented, deployed and tested a novel FPGA accelerated algorithm for neural network training. The algorithm itself was developed in an independent study option. This training method is based on Alternating Direction Method of Multipliers algorithm, which has strong parallel characteristics and avoids procedures such as matrix inversion that are problematic in hardware designs by employing LSMR. As an intermediate stage, we fully implemented the ADMM-LSMR method in C language for feed-forward neural networks with a flexible number of layers and hidden size. We demonstrated that the method can operate with fixed-point arithmetic without compromising the accuracy. Next, we devised an FPGA accelerated version of the algorithm using Intel FPGA SDK for OpenCL and performed extensive optimisation stages followed by successful deployment of the program on an Intel Arria 10 GX FPGA. The FPGA accelerated program showed up to 6 times speed up comparing to equivalent CPU implementation while achieving promising accuracy.