Abstract:Recently, visual grounding and multi-sensors setting have been incorporated into perception system for terrestrial autonomous driving systems and Unmanned Surface Vehicles (USVs), yet the high complexity of modern learning-based visual grounding model using multi-sensors prevents such model to be deployed on USVs in the real-life. To this end, we design a low-power multi-task model named NanoMVG for waterway embodied perception, guiding both camera and 4D millimeter-wave radar to locate specific object(s) through natural language. NanoMVG can perform both box-level and mask-level visual grounding tasks simultaneously. Compared to other visual grounding models, NanoMVG achieves highly competitive performance on the WaterVG dataset, particularly in harsh environments and boasts ultra-low power consumption for long endurance.
Abstract:In the rapidly evolving field of 3D reconstruction, 3D Gaussian Splatting (3DGS) and 2D Gaussian Splatting (2DGS) represent significant advancements. Although 2DGS compresses 3D Gaussian primitives into 2D Gaussian surfels to effectively enhance mesh extraction quality, this compression can potentially lead to a decrease in rendering quality. Additionally, unreliable densification processes and the calculation of depth through the accumulation of opacity can compromise the detail of mesh extraction. To address this issue, we introduce MVG-Splatting, a solution guided by Multi-View considerations. Specifically, we integrate an optimized method for calculating normals, which, combined with image gradients, helps rectify inconsistencies in the original depth computations. Additionally, utilizing projection strategies akin to those in Multi-View Stereo (MVS), we propose an adaptive quantile-based method that dynamically determines the level of additional densification guided by depth maps, from coarse to fine detail. Experimental evidence demonstrates that our method not only resolves the issues of rendering quality degradation caused by depth discrepancies but also facilitates direct mesh extraction from dense Gaussian point clouds using the Marching Cubes algorithm. This approach significantly enhances the overall fidelity and accuracy of the 3D reconstruction process, ensuring that both the geometric details and visual quality.
Abstract:The perception of waterways based on human intent is significant for autonomous navigation and operations of Unmanned Surface Vehicles (USVs) in water environments. Inspired by visual grounding, we introduce WaterVG, the first visual grounding dataset designed for USV-based waterway perception based on human prompts. WaterVG encompasses prompts describing multiple targets, with annotations at the instance level including bounding boxes and masks. Notably, WaterVG includes 11,568 samples with 34,987 referred targets, whose prompts integrates both visual and radar characteristics. The pattern of text-guided two sensors equips a finer granularity of text prompts with visual and radar features of referred targets. Moreover, we propose a low-power visual grounding model, Potamoi, which is a multi-task model with a well-designed Phased Heterogeneous Modality Fusion (PHMF) mode, including Adaptive Radar Weighting (ARW) and Multi-Head Slim Cross Attention (MHSCA). Exactly, ARW extracts required radar features to fuse with vision for prompt alignment. MHSCA is an efficient fusion module with a remarkably small parameter count and FLOPs, elegantly fusing scenario context captured by two sensors with linguistic features, which performs expressively on visual grounding tasks. Comprehensive experiments and evaluations have been conducted on WaterVG, where our Potamoi archives state-of-the-art performances compared with counterparts.
Abstract:Urban water-surface robust perception serves as the foundation for intelligent monitoring of aquatic environments and the autonomous navigation and operation of unmanned vessels, especially in the context of waterway safety. It is worth noting that current multi-sensor fusion and multi-task learning models consume substantial power and heavily rely on high-power GPUs for inference. This contributes to increased carbon emissions, a concern that runs counter to the prevailing emphasis on environmental preservation and the pursuit of sustainable, low-carbon urban environments. In light of these concerns, this paper concentrates on low-power, lightweight, multi-task panoptic perception through the fusion of visual and 4D radar data, which is seen as a promising low-cost perception method. We propose a framework named Achelous++ that facilitates the development and comprehensive evaluation of multi-task water-surface panoptic perception models. Achelous++ can simultaneously execute five perception tasks with high speed and low power consumption, including object detection, object semantic segmentation, drivable-area segmentation, waterline segmentation, and radar point cloud semantic segmentation. Furthermore, to meet the demand for developers to customize models for real-time inference on low-performance devices, a novel multi-modal pruning strategy known as Heterogeneous-Aware SynFlow (HA-SynFlow) is proposed. Besides, Achelous++ also supports random pruning at initialization with different layer-wise sparsity, such as Uniform and Erdos-Renyi-Kernel (ERK). Overall, our Achelous++ framework achieves state-of-the-art performance on the WaterScenes benchmark, excelling in both accuracy and power efficiency compared to other single-task and multi-task models. We release and maintain the code at https://github.com/GuanRunwei/Achelous.
Abstract:With the rapid advancements of sensor technology and deep learning, autonomous driving systems are providing safe and efficient access to intelligent vehicles as well as intelligent transportation. Among these equipped sensors, the radar sensor plays a crucial role in providing robust perception information in diverse environmental conditions. This review focuses on exploring different radar data representations utilized in autonomous driving systems. Firstly, we introduce the capabilities and limitations of the radar sensor by examining the working principles of radar perception and signal processing of radar measurements. Then, we delve into the generation process of five radar representations, including the ADC signal, radar tensor, point cloud, grid map, and micro-Doppler signature. For each radar representation, we examine the related datasets, methods, advantages and limitations. Furthermore, we discuss the challenges faced in these data representations and propose potential research directions. Above all, this comprehensive review offers an in-depth insight into how these representations enhance autonomous system capabilities, providing guidance for radar perception researchers. To facilitate retrieval and comparison of different data representations, datasets and methods, we provide an interactive website at https://radar-camera-fusion.github.io/radar.
Abstract:Panoptic perception is essential to unmanned surface vehicles (USVs) for autonomous navigation. The current panoptic perception scheme is mainly based on vision only, that is, object detection and semantic segmentation are performed simultaneously based on camera sensors. Nevertheless, the fusion of camera and radar sensors is regarded as a promising method which could substitute pure vision methods, but almost all works focus on object detection only. Therefore, how to maximize and subtly fuse the features of vision and radar to improve both detection and segmentation is a challenge. In this paper, we focus on riverway panoptic perception based on USVs, which is a considerably unexplored field compared with road panoptic perception. We propose Efficient-VRNet, a model based on Contextual Clustering (CoC) and the asymmetric fusion of vision and 4D mmWave radar, which treats both vision and radar modalities fairly. Efficient-VRNet can simultaneously perform detection and segmentation of riverway objects and drivable area segmentation. Furthermore, we adopt an uncertainty-based panoptic perception training strategy to train Efficient-VRNet. In the experiments, our Efficient-VRNet achieves better performances on our collected dataset than other uni-modal models, especially in adverse weather and environment with poor lighting conditions. Our code and models are available at \url{https://github.com/GuanRunwei/Efficient-VRNet}.
Abstract:Current perception models for different tasks usually exist in modular forms on Unmanned Surface Vehicles (USVs), which infer extremely slowly in parallel on edge devices, causing the asynchrony between perception results and USV position, and leading to error decisions of autonomous navigation. Compared with Unmanned Ground Vehicles (UGVs), the robust perception of USVs develops relatively slowly. Moreover, most current multi-task perception models are huge in parameters, slow in inference and not scalable. Oriented on this, we propose Achelous, a low-cost and fast unified panoptic perception framework for water-surface perception based on the fusion of a monocular camera and 4D mmWave radar. Achelous can simultaneously perform five tasks, detection and segmentation of visual targets, drivable-area segmentation, waterline segmentation and radar point cloud segmentation. Besides, models in Achelous family, with less than around 5 million parameters, achieve about 18 FPS on an NVIDIA Jetson AGX Xavier, 11 FPS faster than HybridNets, and exceed YOLOX-Tiny and Segformer-B0 on our collected dataset about 5 mAP$_{\text{50-95}}$ and 0.7 mIoU, especially under situations of adverse weather, dark environments and camera failure. To our knowledge, Achelous is the first comprehensive panoptic perception framework combining vision-level and point-cloud-level tasks for water-surface perception. To promote the development of the intelligent transportation community, we release our codes in \url{https://github.com/GuanRunwei/Achelous}.
Abstract:Autonomous driving on water surfaces plays an essential role in executing hazardous and time-consuming missions, such as maritime surveillance, survivors rescue, environmental monitoring, hydrography mapping and waste cleaning. This work presents WaterScenes, the first multi-task 4D radar-camera fusion dataset for autonomous driving on water surfaces. Equipped with a 4D radar and a monocular camera, our Unmanned Surface Vehicle (USV) proffers all-weather solutions for discerning object-related information, including color, shape, texture, range, velocity, azimuth, and elevation. Focusing on typical static and dynamic objects on water surfaces, we label the camera images and radar point clouds at pixel-level and point-level, respectively. In addition to basic perception tasks, such as object detection, instance segmentation and semantic segmentation, we also provide annotations for free-space segmentation and waterline segmentation. Leveraging the multi-task and multi-modal data, we conduct numerous experiments on the single modality of radar and camera, as well as the fused modalities. Results demonstrate that 4D radar-camera fusion can considerably enhance the robustness of perception on water surfaces, especially in adverse lighting and weather conditions. WaterScenes dataset is public on https://waterscenes.github.io.
Abstract:Natural language (NL) based vehicle retrieval is a task aiming to retrieve a vehicle that is most consistent with a given NL query from among all candidate vehicles. Because NL query can be easily obtained, such a task has a promising prospect in building an interactive intelligent traffic system (ITS). Current solutions mainly focus on extracting both text and image features and mapping them to the same latent space to compare the similarity. However, existing methods usually use dependency analysis or semantic role-labelling techniques to find keywords related to vehicle attributes. These techniques may require a lot of pre-processing and post-processing work, and also suffer from extracting the wrong keyword when the NL query is complex. To tackle these problems and simplify, we borrow the idea from named entity recognition (NER) and construct FindVehicle, a NER dataset in the traffic domain. It has 42.3k labelled NL descriptions of vehicle tracks, containing information such as the location, orientation, type and colour of the vehicle. FindVehicle also adopts both overlapping entities and fine-grained entities to meet further requirements. To verify its effectiveness, we propose a baseline NL-based vehicle retrieval model called VehicleFinder. Our experiment shows that by using text encoders pre-trained by FindVehicle, VehicleFinder achieves 87.7\% precision and 89.4\% recall when retrieving a target vehicle by text command on our homemade dataset based on UA-DETRAC. The time cost of VehicleFinder is 279.35 ms on one ARM v8.2 CPU and 93.72 ms on one RTX A4000 GPU, which is much faster than the Transformer-based system. The dataset is open-source via the link https://github.com/GuanRunwei/FindVehicle, and the implementation can be found via the link https://github.com/GuanRunwei/VehicleFinder-CTIM.
Abstract:Driven by deep learning techniques, perception technology in autonomous driving has developed rapidly in recent years. To achieve accurate and robust perception capabilities, autonomous vehicles are often equipped with multiple sensors, making sensor fusion a crucial part of the perception system. Among these fused sensors, radars and cameras enable a complementary and cost-effective perception of the surrounding environment regardless of lighting and weather conditions. This review aims to provide a comprehensive guideline for radar-camera fusion, particularly concentrating on perception tasks related to object detection and semantic segmentation. Based on the principles of the radar and camera sensors, we delve into the data processing process and representations, followed by an in-depth analysis and summary of radar-camera fusion datasets. In the review of methodologies in radar-camera fusion, we address interrogative questions, including "why to fuse", "what to fuse", "where to fuse", "when to fuse", and "how to fuse", subsequently discussing various challenges and potential research directions within this domain. To ease the retrieval and comparison of datasets and fusion methods, we also provide an interactive website: https://XJTLU-VEC.github.io/Radar-Camera-Fusion.