Abstract:Complex high-dimensional spaces with high Degree-of-Freedom and complicated action spaces, such as humanoid robots equipped with dexterous hands, pose significant challenges for reinforcement learning (RL) algorithms, which need to wisely balance exploration and exploitation under limited sample budgets. In general, feasible regions for accomplishing tasks within complex high-dimensional spaces are exceedingly narrow. For instance, in the context of humanoid robot motion control, the vast majority of space corresponds to falling, while only a minuscule fraction corresponds to standing upright, which is conducive to the completion of downstream tasks. Once the robot explores into a potentially task-relevant region, it should place greater emphasis on the data within that region. Building on this insight, we propose the $\textbf{S}$elf-$\textbf{I}$mitative $\textbf{R}$einforcement $\textbf{L}$earning ($\textbf{SIRL}$) framework, where the RL algorithm also imitates potentially task-relevant trajectories. Specifically, trajectory return is utilized to determine its relevance to the task and an additional behavior cloning is adopted whose weight is dynamically adjusted based on the trajectory return. As a result, our proposed algorithm achieves 120% performance improvement on the challenging HumanoidBench with 5% extra computation overhead. With further visualization, we find the significant performance gain does lead to meaningful behavior improvement that several tasks are solved successfully.
Abstract:This paper addresses the limitations of current humanoid robot control frameworks, which primarily rely on reactive mechanisms and lack autonomous interaction capabilities due to data scarcity. We propose Humanoid-VLA, a novel framework that integrates language understanding, egocentric scene perception, and motion control, enabling universal humanoid control. Humanoid-VLA begins with language-motion pre-alignment using non-egocentric human motion datasets paired with textual descriptions, allowing the model to learn universal motion patterns and action semantics. We then incorporate egocentric visual context through a parameter efficient video-conditioned fine-tuning, enabling context-aware motion generation. Furthermore, we introduce a self-supervised data augmentation strategy that automatically generates pseudoannotations directly derived from motion data. This process converts raw motion sequences into informative question-answer pairs, facilitating the effective use of large-scale unlabeled video data. Built upon whole-body control architectures, extensive experiments show that Humanoid-VLA achieves object interaction and environment exploration tasks with enhanced contextual awareness, demonstrating a more human-like capacity for adaptive and intelligent engagement.
Abstract:Vision-language-action models (VLAs) have become increasingly popular in robot manipulation for their end-to-end design and remarkable performance. However, existing VLAs rely heavily on vision-language models (VLMs) that only support text-based instructions, neglecting the more natural speech modality for human-robot interaction. Traditional speech integration methods usually involves a separate speech recognition system, which complicates the model and introduces error propagation. Moreover, the transcription procedure would lose non-semantic information in the raw speech, such as voiceprint, which may be crucial for robots to successfully complete customized tasks. To overcome above challenges, we propose VLAS, a novel end-to-end VLA that integrates speech recognition directly into the robot policy model. VLAS allows the robot to understand spoken commands through inner speech-text alignment and produces corresponding actions to fulfill the task. We also present two new datasets, SQA and CSI, to support a three-stage tuning process for speech instructions, which empowers VLAS with the ability of multimodal interaction across text, image, speech, and robot actions. Taking a step further, a voice retrieval-augmented generation (RAG) paradigm is designed to enable our model to effectively handle tasks that require individual-specific knowledge. Our extensive experiments show that VLAS can effectively accomplish robot manipulation tasks with diverse speech commands, offering a seamless and customized interaction experience.
Abstract:Due to the similar characteristics between event-based visual data and point clouds, recent studies have emerged that treat event data as event clouds to learn based on point cloud analysis. Additionally, some works approach point clouds from the perspective of event vision, employing Spiking Neural Network (SNN) due to their asynchronous nature. However, these contributions are often domain-specific, making it difficult to extend their applicability to other intersecting fields. Moreover, while SNN-based visual tasks have seen significant growth, the conventional timestep-wise iterative activation strategy largely limits their real-world applications by large timesteps, resulting in significant delays and increased computational costs. Although some innovative methods achieve good performance with short timesteps (<10), few have fundamentally restructured the update strategy of spiking neurons to completely overcome the limitations of timesteps. In response to these concerns, we propose a novel and general activation strategy for spiking neurons called Activation-wise Membrane Potential Propagation (AMP2). This approach extends the concept of timesteps from a manually crafted parameter within the activation function to any existing network structure. In experiments on common point cloud tasks (classification, object, and scene segmentation) and event cloud tasks (action recognition), we found that AMP2 stabilizes SNN training, maintains competitive performance, and reduces latency compared to the traditional timestep-wise activation paradigm.
Abstract:Diffusion policies have shown promise in learning complex behaviors from demonstrations, particularly for tasks requiring precise control and long-term planning. However, they face challenges in robustness when encountering distribution shifts. This paper explores improving diffusion-based imitation learning models through online interactions with the environment. We propose OTPR (Optimal Transport-guided score-based diffusion Policy for Reinforcement learning fine-tuning), a novel method that integrates diffusion policies with RL using optimal transport theory. OTPR leverages the Q-function as a transport cost and views the policy as an optimal transport map, enabling efficient and stable fine-tuning. Moreover, we introduce masked optimal transport to guide state-action matching using expert keypoints and a compatibility-based resampling strategy to enhance training stability. Experiments on three simulation tasks demonstrate OTPR's superior performance and robustness compared to existing methods, especially in complex and sparse-reward environments. In sum, OTPR provides an effective framework for combining IL and RL, achieving versatile and reliable policy learning. The code will be released at https://github.com/Sunmmyy/OTPR.git.
Abstract:With the rapid development of embodied artificial intelligence, significant progress has been made in vision-language-action (VLA) models for general robot decision-making. However, the majority of existing VLAs fail to account for the inevitable external perturbations encountered during deployment. These perturbations introduce unforeseen state information to the VLA, resulting in inaccurate actions and consequently, a significant decline in generalization performance. The classic internal model control (IMC) principle demonstrates that a closed-loop system with an internal model that includes external input signals can accurately track the reference input and effectively offset the disturbance. We propose a novel closed-loop VLA method GEVRM that integrates the IMC principle to enhance the robustness of robot visual manipulation. The text-guided video generation model in GEVRM can generate highly expressive future visual planning goals. Simultaneously, we evaluate perturbations by simulating responses, which are called internal embeddings and optimized through prototype contrastive learning. This allows the model to implicitly infer and distinguish perturbations from the external environment. The proposed GEVRM achieves state-of-the-art performance on both standard and perturbed CALVIN benchmarks and shows significant improvements in realistic robot tasks.
Abstract:Behavior Cloning (BC) is a widely adopted visual imitation learning method in robot manipulation. Current BC approaches often enhance generalization by leveraging large datasets and incorporating additional visual and textual modalities to capture more diverse information. However, these methods overlook whether the learned representations contain redundant information and lack a solid theoretical foundation to guide the learning process. To address these limitations, we adopt an information-theoretic perspective and introduce mutual information to quantify and mitigate redundancy in latent representations. Building on this, we incorporate the Information Bottleneck (IB) principle into BC, which extends the idea of reducing redundancy by providing a structured framework for compressing irrelevant information while preserving task-relevant features. This work presents the first comprehensive study on redundancy in latent representations across various methods, backbones, and experimental settings, while extending the generalizability of the IB to BC. Extensive experiments and analyses on the CortexBench and LIBERO benchmarks demonstrate significant performance improvements with IB, underscoring the importance of reducing input data redundancy and highlighting its practical value for more practical applications. Project Page: https://baishuanghao.github.io/BC-IB.github.io.
Abstract:This paper addresses the inherent inference latency challenges associated with deploying multimodal large language models (MLLM) in quadruped vision-language-action (QUAR-VLA) tasks. Our investigation reveals that conventional parameter reduction techniques ultimately impair the performance of the language foundation model during the action instruction tuning phase, making them unsuitable for this purpose. We introduce a novel latency-free quadruped MLLM model, dubbed QUART-Online, designed to enhance inference efficiency without degrading the performance of the language foundation model. By incorporating Action Chunk Discretization (ACD), we compress the original action representation space, mapping continuous action values onto a smaller set of discrete representative vectors while preserving critical information. Subsequently, we fine-tune the MLLM to integrate vision, language, and compressed actions into a unified semantic space. Experimental results demonstrate that QUART-Online operates in tandem with the existing MLLM system, achieving real-time inference in sync with the underlying controller frequency, significantly boosting the success rate across various tasks by 65%. Our project page is https://quart-online.github.io.
Abstract:Recently, a state-of-the-art family of algorithms, known as Goal-Conditioned Weighted Supervised Learning (GCWSL) methods, has been introduced to tackle challenges in offline goal-conditioned reinforcement learning (RL). GCWSL optimizes a lower bound of the goal-conditioned RL objective and has demonstrated outstanding performance across diverse goal-reaching tasks, providing a simple, effective, and stable solution. However, prior research has identified a critical limitation of GCWSL: the lack of trajectory stitching capabilities. To address this, goal data augmentation strategies have been proposed to enhance these methods. Nevertheless, existing techniques often struggle to sample suitable augmented goals for GCWSL effectively. In this paper, we establish unified principles for goal data augmentation, focusing on goal diversity, action optimality, and goal reachability. Based on these principles, we propose a Model-based Goal Data Augmentation (MGDA) approach, which leverages a learned dynamics model to sample more suitable augmented goals. MGDA uniquely incorporates the local Lipschitz continuity assumption within the learned model to mitigate the impact of compounding errors. Empirical results show that MGDA significantly enhances the performance of GCWSL methods on both state-based and vision-based maze datasets, surpassing previous goal data augmentation techniques in improving stitching capabilities.
Abstract:Lyric-to-melody generation is a highly challenging task in the field of AI music generation. Due to the difficulty of learning strict yet weak correlations between lyrics and melodies, previous methods have suffered from weak controllability, low-quality and poorly structured generation. To address these challenges, we propose CSL-L2M, a controllable song-level lyric-to-melody generation method based on an in-attention Transformer decoder with fine-grained lyric and musical controls, which is able to generate full-song melodies matched with the given lyrics and user-specified musical attributes. Specifically, we first introduce REMI-Aligned, a novel music representation that incorporates strict syllable- and sentence-level alignments between lyrics and melodies, facilitating precise alignment modeling. Subsequently, sentence-level semantic lyric embeddings independently extracted from a sentence-wise Transformer encoder are combined with word-level part-of-speech embeddings and syllable-level tone embeddings as fine-grained controls to enhance the controllability of lyrics over melody generation. Then we introduce human-labeled musical tags, sentence-level statistical musical attributes, and learned musical features extracted from a pre-trained VQ-VAE as coarse-grained, fine-grained and high-fidelity controls, respectively, to the generation process, thereby enabling user control over melody generation. Finally, an in-attention Transformer decoder technique is leveraged to exert fine-grained control over the full-song melody generation with the aforementioned lyric and musical conditions. Experimental results demonstrate that our proposed CSL-L2M outperforms the state-of-the-art models, generating melodies with higher quality, better controllability and enhanced structure. Demos and source code are available at https://lichaiustc.github.io/CSL-L2M/.