Abstract:Diffusion transformers have shown significant effectiveness in both image and video synthesis at the expense of huge computation costs. To address this problem, feature caching methods have been introduced to accelerate diffusion transformers by caching the features in previous timesteps and reusing them in the following timesteps. However, previous caching methods ignore that different tokens exhibit different sensitivities to feature caching, and feature caching on some tokens may lead to 10$\times$ more destruction to the overall generation quality compared with other tokens. In this paper, we introduce token-wise feature caching, allowing us to adaptively select the most suitable tokens for caching, and further enable us to apply different caching ratios to neural layers in different types and depths. Extensive experiments on PixArt-$\alpha$, OpenSora, and DiT demonstrate our effectiveness in both image and video generation with no requirements for training. For instance, 2.36$\times$ and 1.93$\times$ acceleration are achieved on OpenSora and PixArt-$\alpha$ with almost no drop in generation quality.
Abstract:To address the occlusion issues in person Re-Identification (ReID) tasks, many methods have been proposed to extract part features by introducing external spatial information. However, due to missing part appearance information caused by occlusion and noisy spatial information from external model, these purely vision-based approaches fail to correctly learn the features of human body parts from limited training data and struggle in accurately locating body parts, ultimately leading to misaligned part features. To tackle these challenges, we propose a Prompt-guided Feature Disentangling method (ProFD), which leverages the rich pre-trained knowledge in the textual modality facilitate model to generate well-aligned part features. ProFD first designs part-specific prompts and utilizes noisy segmentation mask to preliminarily align visual and textual embedding, enabling the textual prompts to have spatial awareness. Furthermore, to alleviate the noise from external masks, ProFD adopts a hybrid-attention decoder, ensuring spatial and semantic consistency during the decoding process to minimize noise impact. Additionally, to avoid catastrophic forgetting, we employ a self-distillation strategy, retaining pre-trained knowledge of CLIP to mitigate over-fitting. Evaluation results on the Market1501, DukeMTMC-ReID, Occluded-Duke, Occluded-ReID, and P-DukeMTMC datasets demonstrate that ProFD achieves state-of-the-art results. Our project is available at: https://github.com/Cuixxx/ProFD.
Abstract:Fueled by the Large Language Models (LLMs) wave, Large Visual-Language Models (LVLMs) have emerged as a pivotal advancement, bridging the gap between image and text. However, video making it challenging for LVLMs to perform adequately due to the complexity of the relationship between language and spatial-temporal data structure. Recent Large Video-Language Models (LVidLMs) align feature of static visual data like image into latent space of language feature, by general multi-modal tasks to leverage abilities of LLMs sufficiently. In this paper, we explore fine-grained alignment approach via object trajectory for different modalities across both spatial and temporal dimensions simultaneously. Thus, we propose a novel LVidLM by trajectory-guided Pixel-Temporal Alignment, dubbed PiTe, that exhibits promising applicable model property. To achieve fine-grained video-language alignment, we curate a multi-modal pre-training dataset PiTe-143k, the dataset provision of moving trajectories in pixel level for all individual objects, that appear and mention in the video and caption both, by our automatic annotation pipeline. Meanwhile, PiTe demonstrates astounding capabilities on myriad video-related multi-modal tasks through beat the state-of-the-art methods by a large margin.
Abstract:To transfer knowledge from seen attribute-object compositions to recognize unseen ones, recent compositional zero-shot learning (CZSL) methods mainly discuss the optimal classification branches to identify the elements, leading to the popularity of employing a three-branch architecture. However, these methods mix up the underlying relationship among the branches, in the aspect of consistency and diversity. Specifically, consistently providing the highest-level features for all three branches increases the difficulty in distinguishing classes that are superficially similar. Furthermore, a single branch may focus on suboptimal regions when spatial messages are not shared between the personalized branches. Recognizing these issues and endeavoring to address them, we propose a novel method called Focus-Consistent Multi-Level Aggregation (FOMA). Our method incorporates a Multi-Level Feature Aggregation (MFA) module to generate personalized features for each branch based on the image content. Additionally, a Focus-Consistent Constraint encourages a consistent focus on the informative regions, thereby implicitly exchanging spatial information between all branches. Extensive experiments on three benchmark datasets (UT-Zappos, C-GQA, and Clothing16K) demonstrate that our FOMA outperforms SOTA.
Abstract:Referring expression comprehension (REC) is a vision-language task to locate a target object in an image based on a language expression. Fully fine-tuning general-purpose pre-trained models for REC yields impressive performance but becomes increasingly costly. Parameter-efficient transfer learning (PETL) methods have shown strong performance with fewer tunable parameters. However, applying PETL to REC faces two challenges: (1) insufficient interaction between pre-trained vision and language encoders, and (2) high GPU memory usage due to gradients passing through both heavy encoders. To address these issues, we present M$^2$IST: Multi-Modal Interactive Side-Tuning with M$^3$ISAs: Mixture of Multi-Modal Interactive Side-Adapters. During fine-tuning, we keep the pre-trained vision and language encoders fixed and update M$^3$ISAs on side networks to establish connections between them, thereby achieving parameter- and memory-efficient tuning for REC. Empirical results on three benchmarks show M$^2$IST achieves the best performance-parameter-memory trade-off compared to full fine-tuning and other PETL methods, with only 3.14M tunable parameters (2.11% of full fine-tuning) and 15.44GB GPU memory usage (39.61% of full fine-tuning). Source code will soon be publicly available.
Abstract:Parameter-efficient fine-tuning (PEFT) has emerged as a popular approach for adapting pre-trained Vision Transformer (ViT) models to downstream applications. While current PEFT methods achieve parameter efficiency, they overlook GPU memory and time efficiency during both fine-tuning and inference, due to the repeated computation of redundant tokens in the ViT architecture. This falls short of practical requirements for downstream task adaptation. In this paper, we propose \textbf{Sparse-Tuning}, a novel tuning paradigm that substantially enhances both fine-tuning and inference efficiency for pre-trained ViT models. Sparse-Tuning efficiently fine-tunes the pre-trained ViT by sparsely preserving the informative tokens and merging redundant ones, enabling the ViT to focus on the foreground while reducing computational costs on background regions in the images. To accurately distinguish informative tokens from uninformative ones, we introduce a tailored Dense Adapter, which establishes dense connections across different encoder layers in the ViT, thereby enhancing the representational capacity and quality of token sparsification. Empirical results on VTAB-1K, three complete image datasets, and two complete video datasets demonstrate that Sparse-Tuning reduces the GFLOPs to \textbf{62\%-70\%} of the original ViT-B while achieving state-of-the-art performance. Source code is available at \url{https://github.com/liuting20/Sparse-Tuning}.
Abstract:Visual grounding (VG) is a challenging task to localize an object in an image based on a textual description. Recent surge in the scale of VG models has substantially improved performance, but also introduced a significant burden on computational costs during fine-tuning. In this paper, we explore applying parameter-efficient transfer learning (PETL) to efficiently transfer the pre-trained vision-language knowledge to VG. Specifically, we propose \textbf{DARA}, a novel PETL method comprising \underline{\textbf{D}}omain-aware \underline{\textbf{A}}dapters (DA Adapters) and \underline{\textbf{R}}elation-aware \underline{\textbf{A}}dapters (RA Adapters) for VG. DA Adapters first transfer intra-modality representations to be more fine-grained for the VG domain. Then RA Adapters share weights to bridge the relation between two modalities, improving spatial reasoning. Empirical results on widely-used benchmarks demonstrate that DARA achieves the best accuracy while saving numerous updated parameters compared to the full fine-tuning and other PETL methods. Notably, with only \textbf{2.13\%} tunable backbone parameters, DARA improves average accuracy by \textbf{0.81\%} across the three benchmarks compared to the baseline model. Our code is available at \url{https://github.com/liuting20/DARA}.
Abstract:In recent years, the application of multimodal large language models (MLLM) in various fields has achieved remarkable success. However, as the foundation model for many downstream tasks, current MLLMs are composed of the well-known Transformer network, which has a less efficient quadratic computation complexity. To improve the efficiency of such basic models, we propose Cobra, a linear computational complexity MLLM. Specifically, Cobra integrates the efficient Mamba language model into the visual modality. Moreover, we explore and study various modal fusion schemes to create an effective multi-modal Mamba. Extensive experiments demonstrate that (1) Cobra achieves extremely competitive performance with current computationally efficient state-of-the-art methods, e.g., LLaVA-Phi, TinyLLaVA, and MobileVLM v2, and has faster speed due to Cobra's linear sequential modeling. (2) Interestingly, the results of closed-set challenging prediction benchmarks show that Cobra performs well in overcoming visual illusions and spatial relationship judgments. (3) Notably, Cobra even achieves comparable performance to LLaVA with about 43% of the number of parameters. We will make all codes of Cobra open-source and hope that the proposed method can facilitate future research on complexity problems in MLLM. Our project page is available at: https://sites.google.com/view/cobravlm.
Abstract:Recently, despite the unprecedented success of large pre-trained visual-language models (VLMs) on a wide range of downstream tasks, the real-world unsupervised domain adaptation (UDA) problem is still not well explored. Therefore, in this paper, we first experimentally demonstrate that the unsupervised-trained VLMs can significantly reduce the distribution discrepancy between source and target domains, thereby improving the performance of UDA. However, a major challenge for directly deploying such models on downstream UDA tasks is prompt engineering, which requires aligning the domain knowledge of source and target domains, since the performance of UDA is severely influenced by a good domain-invariant representation. We further propose a Prompt-based Distribution Alignment (PDA) method to incorporate the domain knowledge into prompt learning. Specifically, PDA employs a two-branch prompt-tuning paradigm, namely base branch and alignment branch. The base branch focuses on integrating class-related representation into prompts, ensuring discrimination among different classes. To further minimize domain discrepancy, for the alignment branch, we construct feature banks for both the source and target domains and propose image-guided feature tuning (IFT) to make the input attend to feature banks, which effectively integrates self-enhanced and cross-domain features into the model. In this way, these two branches can be mutually promoted to enhance the adaptation of VLMs for UDA. We conduct extensive experiments on three benchmarks to demonstrate that our proposed PDA achieves state-of-the-art performance. The code is available at https://github.com/BaiShuanghao/Prompt-based-Distribution-Alignment.
Abstract:Diffusion models have recently achieved remarkable progress in generating realistic images. However, challenges remain in accurately understanding and synthesizing the layout requirements in the textual prompts. To align the generated image with layout instructions, we present a training-free layout calibration system SimM that intervenes in the generative process on the fly during inference time. Specifically, following a "check-locate-rectify" pipeline, the system first analyses the prompt to generate the target layout and compares it with the intermediate outputs to automatically detect errors. Then, by moving the located activations and making intra- and inter-map adjustments, the rectification process can be performed with negligible computational overhead. To evaluate SimM over a range of layout requirements, we present a benchmark SimMBench that compensates for the lack of superlative spatial relations in existing datasets. And both quantitative and qualitative results demonstrate the effectiveness of the proposed SimM in calibrating the layout inconsistencies. Our project page is at https://simm-t2i.github.io/SimM.