Abstract:The semantic parsing-based method is an important research branch for knowledge-based question answering. It usually generates executable programs lean upon the question and then conduct them to reason answers over a knowledge base. Benefit from this inherent mechanism, it has advantages in the performance and the interpretability. However, traditional semantic parsing methods usually generate a complete program before executing it, which struggles with multi-hop question answering over heterogeneous knowledge. On one hand, generating a complete multi-hop program relies on multiple heterogeneous supporting facts, and it is difficult for generators to understand these facts simultaneously. On the other hand, this way ignores the semantic information of the intermediate answers at each hop, which is beneficial for subsequent generation. To alleviate these challenges, we propose a self-iterative framework for multi-hop program generation (HopPG) over heterogeneous knowledge, which leverages the previous execution results to retrieve supporting facts and generate subsequent programs hop by hop. We evaluate our model on MMQA-T^2, and the experimental results show that HopPG outperforms existing semantic-parsing-based baselines, especially on the multi-hop questions.
Abstract:Hybrid question answering (HQA) aims to answer questions over heterogeneous data, including tables and passages linked to table cells. The heterogeneous data can provide different granularity evidence to HQA models, e.t., column, row, cell, and link. Conventional HQA models usually retrieve coarse- or fine-grained evidence to reason the answer. Through comparison, we find that coarse-grained evidence is easier to retrieve but contributes less to the reasoner, while fine-grained evidence is the opposite. To preserve the advantage and eliminate the disadvantage of different granularity evidence, we propose MuGER$^2$, a Multi-Granularity Evidence Retrieval and Reasoning approach. In evidence retrieval, a unified retriever is designed to learn the multi-granularity evidence from the heterogeneous data. In answer reasoning, an evidence selector is proposed to navigate the fine-grained evidence for the answer reader based on the learned multi-granularity evidence. Experiment results on the HybridQA dataset show that MuGER$^2$ significantly boosts the HQA performance. Further ablation analysis verifies the effectiveness of both the retrieval and reasoning designs.
Abstract:This paper aims to enhance the few-shot relation classification especially for sentences that jointly describe multiple relations. Due to the fact that some relations usually keep high co-occurrence in the same context, previous few-shot relation classifiers struggle to distinguish them with few annotated instances. To alleviate the above relation confusion problem, we propose CTEG, a model equipped with two mechanisms to learn to decouple these easily-confused relations. On the one hand, an Entity-Guided Attention (EGA) mechanism, which leverages the syntactic relations and relative positions between each word and the specified entity pair, is introduced to guide the attention to filter out information causing confusion. On the other hand, a Confusion-Aware Training (CAT) method is proposed to explicitly learn to distinguish relations by playing a pushing-away game between classifying a sentence into a true relation and its confusing relation. Extensive experiments are conducted on the FewRel dataset, and the results show that our proposed model achieves comparable and even much better results to strong baselines in terms of accuracy. Furthermore, the ablation test and case study verify the effectiveness of our proposed EGA and CAT, especially in addressing the relation confusion problem.