Abstract:Reinforcement Learning from Human Feedback (RLHF) has been proven to be an effective method for preference alignment of large language models (LLMs) and is widely used in the post-training process of LLMs. However, RLHF struggles with handling multiple competing preferences. This leads to a decrease in the alignment of LLMs with human preferences. To address this issue, we propose Preference Mixture of LoRAs (PMoL) from the perspective of model architecture, which can adapt to any number of preferences to mix. PMoL combines Mixture of Experts (MoE) and Low Rank Adaptor (LoRA). This architecture is innovatively applied to the research of preference alignment and has achieved significant performance improvement. The expert group soft loss is used to enable MoE with the ability to mix preferences. Through comprehensive evaluation by the reward model and GPT-4o, the experiment results show that PMoL has superior preference mixing capabilities compared to baseline methods. PMoL achieves better preference alignment with lower training costs.
Abstract:The remarkable understanding and generation capabilities of large language models (LLMs) have greatly improved translation performance. However, incorrect understanding of the sentence to be translated can degrade translation quality. To address this issue, we proposed a novel Iterative Bilingual Understanding Translation (IBUT) method based on the cross-lingual capabilities of LLMs and the dual characteristics of translation tasks. The cross-lingual capability of LLMs enables the generation of contextual understanding for both the source and target languages separately. Furthermore, the dual characteristics allow IBUT to generate effective cross-lingual feedback, iteratively refining contextual understanding, thereby reducing errors and improving translation performance. Experimental results showed that the proposed IBUT outperforms several strong comparison methods, especially being generalized to multiple domains (e.g., news, commonsense, and cultural translation benchmarks).
Abstract:The advent of large language models (LLMs) has spurred considerable interest in advancing autonomous LLMs-based agents, particularly in intriguing applications within smartphone graphical user interfaces (GUIs). When presented with a task goal, these agents typically emulate human actions within a GUI environment until the task is completed. However, a key challenge lies in devising effective plans to guide action prediction in GUI tasks, though planning have been widely recognized as effective for decomposing complex tasks into a series of steps. Specifically, given the dynamic nature of environmental GUIs following action execution, it is crucial to dynamically adapt plans based on environmental feedback and action history.We show that the widely-used ReAct approach fails due to the excessively long historical dialogues. To address this challenge, we propose a novel approach called Dynamic Planning of Thoughts (D-PoT) for LLM-based GUI agents.D-PoT involves the dynamic adjustment of planning based on the environmental feedback and execution history. Experimental results reveal that the proposed D-PoT significantly surpassed the strong GPT-4V baseline by +12.7% (34.66% $\rightarrow$ 47.36%) in accuracy. The analysis highlights the generality of dynamic planning in different backbone LLMs, as well as the benefits in mitigating hallucinations and adapting to unseen tasks. Code is available at https://github.com/sqzhang-lazy/D-PoT.
Abstract:Recently, there has been a trend of evaluating the Large Language Model (LLM) quality in the flavor of LLM-as-a-Judge, namely leveraging another LLM to evaluate the current output quality. However, existing judges are proven to be biased, namely they would favor answers which present better superficial quality (such as verbosity, fluency) while ignoring the instruction following ability. In this work, we propose systematic research about the bias of LLM-as-a-Judge. Specifically, for closed-source judge models, we apply calibration to mitigate the significance of superficial quality, both on probability level and prompt level. For open-source judge models, we propose to mitigate the bias by contrastive training, with curated negative samples that deviate from instruction but present better superficial quality. We apply our methods on the bias evaluation benchmark, and experiment results show our methods mitigate the bias by a large margin while maintaining a satisfactory evaluation accuracy.
Abstract:Large language models (LLMs) have shown remarkable performance in general translation tasks. However, the increasing demand for high-quality translations that are not only adequate but also fluent and elegant. To assess the extent to which current LLMs can meet these demands, we introduce a suitable benchmark for translating classical Chinese poetry into English. This task requires not only adequacy in translating culturally and historically significant content but also a strict adherence to linguistic fluency and poetic elegance. Our study reveals that existing LLMs fall short of this task. To address these issues, we propose RAT, a \textbf{R}etrieval-\textbf{A}ugmented machine \textbf{T}ranslation method that enhances the translation process by incorporating knowledge related to classical poetry. Additionally, we propose an automatic evaluation metric based on GPT-4, which better assesses translation quality in terms of adequacy, fluency, and elegance, overcoming the limitations of traditional metrics. Our dataset and code will be made available.
Abstract:The recent surge of versatile large language models (LLMs) largely depends on aligning increasingly capable foundation models with human intentions by preference learning, enhancing LLMs with excellent applicability and effectiveness in a wide range of contexts. Despite the numerous related studies conducted, a perspective on how human preferences are introduced into LLMs remains limited, which may prevent a deeper comprehension of the relationships between human preferences and LLMs as well as the realization of their limitations. In this survey, we review the progress in exploring human preference learning for LLMs from a preference-centered perspective, covering the sources and formats of preference feedback, the modeling and usage of preference signals, as well as the evaluation of the aligned LLMs. We first categorize the human feedback according to data sources and formats. We then summarize techniques for human preferences modeling and compare the advantages and disadvantages of different schools of models. Moreover, we present various preference usage methods sorted by the objectives to utilize human preference signals. Finally, we summarize some prevailing approaches to evaluate LLMs in terms of alignment with human intentions and discuss our outlooks on the human intention alignment for LLMs.
Abstract:We present STAR, a text-to-image model that employs scale-wise auto-regressive paradigm. Unlike VAR, which is limited to class-conditioned synthesis within a fixed set of predetermined categories, our STAR enables text-driven open-set generation through three key designs: To boost diversity and generalizability with unseen combinations of objects and concepts, we introduce a pre-trained text encoder to extract representations for textual constraints, which we then use as guidance. To improve the interactions between generated images and fine-grained textual guidance, making results more controllable, additional cross-attention layers are incorporated at each scale. Given the natural structure correlation across different scales, we leverage 2D Rotary Positional Encoding (RoPE) and tweak it into a normalized version. This ensures consistent interpretation of relative positions across token maps at different scales and stabilizes the training process. Extensive experiments demonstrate that STAR surpasses existing benchmarks in terms of fidelity,image text consistency, and aesthetic quality. Our findings emphasize the potential of auto-regressive methods in the field of high-quality image synthesis, offering promising new directions for the T2I field currently dominated by diffusion methods.
Abstract:Recently, large language models (LLMs) enhanced by self-reflection have achieved promising performance on machine translation. The key idea is guiding LLMs to generate translation with human-like feedback. However, existing self-reflection methods lack effective feedback information, limiting the translation performance. To address this, we introduce a DUAL-REFLECT framework, leveraging the dual learning of translation tasks to provide effective feedback, thereby enhancing the models' self-reflective abilities and improving translation performance. The application of this method across various translation tasks has proven its effectiveness in improving translation accuracy and eliminating ambiguities, especially in translation tasks with low-resource language pairs.
Abstract:A well-executed graphic design typically achieves harmony in two levels, from the fine-grained design elements (color, font and layout) to the overall design. This complexity makes the comprehension of graphic design challenging, for it needs the capability to both recognize the design elements and understand the design. With the rapid development of Multimodal Large Language Models (MLLMs), we establish the DesignProbe, a benchmark to investigate the capability of MLLMs in design. Our benchmark includes eight tasks in total, across both the fine-grained element level and the overall design level. At design element level, we consider both the attribute recognition and semantic understanding tasks. At overall design level, we include style and metaphor. 9 MLLMs are tested and we apply GPT-4 as evaluator. Besides, further experiments indicates that refining prompts can enhance the performance of MLLMs. We first rewrite the prompts by different LLMs and found increased performances appear in those who self-refined by their own LLMs. We then add extra task knowledge in two different ways (text descriptions and image examples), finding that adding images boost much more performance over texts.
Abstract:Recent advancements highlight the success of instruction tuning with large language models (LLMs) utilizing Chain-of-Thought (CoT) data for mathematical reasoning tasks. Despite the fine-tuned LLMs, challenges persist, such as incorrect, missing, and redundant steps in CoT generation leading to inaccuracies in answer predictions. To alleviate this problem, we propose a dual instruction tuning strategy to meticulously model mathematical reasoning from both forward and reverse directions. This involves introducing the Intermediate Reasoning State Prediction task (forward reasoning) and the Instruction Reconstruction task (reverse reasoning) to enhance the LLMs' understanding and execution of instructions. Training instances for these tasks are constructed based on existing mathematical instruction tuning datasets. Subsequently, LLMs undergo multi-task fine-tuning using both existing mathematical instructions and the newly created data. Comprehensive experiments validate the effectiveness and domain generalization of the dual instruction tuning strategy across various mathematical reasoning tasks.