Abstract:In-context learning (ICL) and Retrieval-Augmented Generation (RAG) have gained attention for their ability to enhance LLMs' reasoning by incorporating external knowledge but suffer from limited contextual window size, leading to insufficient information injection. To this end, we propose a novel framework, RuAG, to automatically distill large volumes of offline data into interpretable first-order logic rules, which are injected into LLMs to boost their reasoning capabilities. Our method begins by formulating the search process relying on LLMs' commonsense, where LLMs automatically define head and body predicates. Then, RuAG applies Monte Carlo Tree Search (MCTS) to address the combinational searching space and efficiently discover logic rules from data. The resulting logic rules are translated into natural language, allowing targeted knowledge injection and seamless integration into LLM prompts for LLM's downstream task reasoning. We evaluate our framework on public and private industrial tasks, including natural language processing, time-series, decision-making, and industrial tasks, demonstrating its effectiveness in enhancing LLM's capability over diverse tasks.
Abstract:Large language models (LLMs) have demonstrated the ability to improve human efficiency through conversational interactions. Conventional LLM-powered dialogue systems, operating on a turn-based paradigm, preclude real-time interaction during response generation. To address this limitation, researchers have proposed duplex models. These models can dynamically adapt to user input, facilitating real-time interactive feedback. However, these methods typically require substantial computational resources to acquire the ability. To reduce overhead, this paper presents a new duplex decoding approach that enhances LLMs with duplex ability, requiring minimal additional training. Specifically, our method employs parallel decoding of queries and responses in conversations, effectively implementing a channel-division-multiplexing decoding strategy. Experimental results indicate that our proposed method significantly enhances the naturalness and human-likeness of user-AI interactions with minimal training costs.
Abstract:Surgical guide plate is an important tool for the dental implant surgery. However, the design process heavily relies on the dentist to manually simulate the implant angle and depth. When deep neural networks have been applied to assist the dentist quickly locates the implant position, most of them are not able to determine the implant depth. Inspired by the video grounding task which localizes the starting and ending time of the target video segment, in this paper, we simplify the implant depth prediction as video grounding and develop a Texture Perceive Implant Depth Prediction Network (TPNet), which enables us to directly output the implant depth without complex measurements of oral bone. TPNet consists of an implant region detector (IRD) and an implant depth prediction network (IDPNet). IRD is an object detector designed to crop the candidate implant volume from the CBCT, which greatly saves the computation resource. IDPNet takes the cropped CBCT data to predict the implant depth. A Texture Perceive Loss (TPL) is devised to enable the encoder of IDPNet to perceive the texture variation among slices. Extensive experiments on a large dental implant dataset demonstrated that the proposed TPNet achieves superior performance than the existing methods.
Abstract:Creating 3D textured meshes using generative artificial intelligence has garnered significant attention recently. While existing methods support text-based generative texture generation or editing on 3D meshes, they often struggle to precisely control pixels of texture images through more intuitive interaction. While 2D images can be edited generatively using drag interaction, applying this type of methods directly to 3D mesh textures still leads to issues such as the lack of local consistency among multiple views, error accumulation and long training times. To address these challenges, we propose a generative point-based 3D mesh texture editing method called DragTex. This method utilizes a diffusion model to blend locally inconsistent textures in the region near the deformed silhouette between different views, enabling locally consistent texture editing. Besides, we fine-tune a decoder to reduce reconstruction errors in the non-drag region, thereby mitigating overall error accumulation. Moreover, we train LoRA using multi-view images instead of training each view individually, which significantly shortens the training time. The experimental results show that our method effectively achieves dragging textures on 3D meshes and generates plausible textures that align with the desired intent of drag interaction.
Abstract:The significant breakthroughs of Medical Multi-Modal Large Language Models (Med-MLLMs) renovate modern healthcare with robust information synthesis and medical decision support. However, these models are often evaluated on benchmarks that are unsuitable for the Med-MLLMs due to the intricate nature of the real-world diagnostic frameworks, which encompass diverse medical specialties and involve complex clinical decisions. Moreover, these benchmarks are susceptible to data leakage, since Med-MLLMs are trained on large assemblies of publicly available data. Thus, an isolated and clinically representative benchmark is highly desirable for credible Med-MLLMs evaluation. To this end, we introduce Asclepius, a novel Med-MLLM benchmark that rigorously and comprehensively assesses model capability in terms of: distinct medical specialties (cardiovascular, gastroenterology, etc.) and different diagnostic capacities (perception, disease analysis, etc.). Grounded in 3 proposed core principles, Asclepius ensures a comprehensive evaluation by encompassing 15 medical specialties, stratifying into 3 main categories and 8 sub-categories of clinical tasks, and exempting from train-validate contamination. We further provide an in-depth analysis of 6 Med-MLLMs and compare them with 5 human specialists, providing insights into their competencies and limitations in various medical contexts. Our work not only advances the understanding of Med-MLLMs' capabilities but also sets a precedent for future evaluations and the safe deployment of these models in clinical environments. We launch and maintain a leaderboard for community assessment of Med-MLLM capabilities (https://asclepius-med.github.io/).
Abstract:A wide range of real-world applications is characterized by their symbolic nature, necessitating a strong capability for symbolic reasoning. This paper investigates the potential application of Large Language Models (LLMs) as symbolic reasoners. We focus on text-based games, significant benchmarks for agents with natural language capabilities, particularly in symbolic tasks like math, map reading, sorting, and applying common sense in text-based worlds. To facilitate these agents, we propose an LLM agent designed to tackle symbolic challenges and achieve in-game objectives. We begin by initializing the LLM agent and informing it of its role. The agent then receives observations and a set of valid actions from the text-based games, along with a specific symbolic module. With these inputs, the LLM agent chooses an action and interacts with the game environments. Our experimental results demonstrate that our method significantly enhances the capability of LLMs as automated agents for symbolic reasoning, and our LLM agent is effective in text-based games involving symbolic tasks, achieving an average performance of 88% across all tasks.
Abstract:Offline Multi-agent Reinforcement Learning (MARL) is valuable in scenarios where online interaction is impractical or risky. While independent learning in MARL offers flexibility and scalability, accurately assigning credit to individual agents in offline settings poses challenges due to partial observability and emergent behavior. Directly transferring the online credit assignment method to offline settings results in suboptimal outcomes due to the absence of real-time feedback and intricate agent interactions. Our approach, MACCA, characterizing the generative process as a Dynamic Bayesian Network, captures relationships between environmental variables, states, actions, and rewards. Estimating this model on offline data, MACCA can learn each agent's contribution by analyzing the causal relationship of their individual rewards, ensuring accurate and interpretable credit assignment. Additionally, the modularity of our approach allows it to seamlessly integrate with various offline MARL methods. Theoretically, we proved that under the setting of the offline dataset, the underlying causal structure and the function for generating the individual rewards of agents are identifiable, which laid the foundation for the correctness of our modeling. Experimentally, we tested MACCA in two environments, including discrete and continuous action settings. The results show that MACCA outperforms SOTA methods and improves performance upon their backbones.
Abstract:Multi-modal sarcasm detection has attracted much recent attention. Nevertheless, the existing benchmark (MMSD) has some shortcomings that hinder the development of reliable multi-modal sarcasm detection system: (1) There are some spurious cues in MMSD, leading to the model bias learning; (2) The negative samples in MMSD are not always reasonable. To solve the aforementioned issues, we introduce MMSD2.0, a correction dataset that fixes the shortcomings of MMSD, by removing the spurious cues and re-annotating the unreasonable samples. Meanwhile, we present a novel framework called multi-view CLIP that is capable of leveraging multi-grained cues from multiple perspectives (i.e., text, image, and text-image interaction view) for multi-modal sarcasm detection. Extensive experiments show that MMSD2.0 is a valuable benchmark for building reliable multi-modal sarcasm detection systems and multi-view CLIP can significantly outperform the previous best baselines.
Abstract:Self-supervised molecular representation learning is critical for molecule-based tasks such as AI-assisted drug discovery. Recent studies consider leveraging both 2D and 3D information for representation learning, with straightforward alignment strategies that treat each modality separately. In this work, we introduce a novel "blend-then-predict" self-supervised learning method (MoleBLEND), which blends atom relations from different modalities into one unified relation matrix for encoding, then recovers modality-specific information for both 2D and 3D structures. By treating atom relationships as anchors, seemingly dissimilar 2D and 3D manifolds are aligned and integrated at fine-grained relation-level organically. Extensive experiments show that MoleBLEND achieves state-of-the-art performance across major 2D/3D benchmarks. We further provide theoretical insights from the perspective of mutual-information maximization, demonstrating that our method unifies contrastive, generative (inter-modal prediction) and mask-then-predict (intra-modal prediction) objectives into a single cohesive blend-then-predict framework.
Abstract:A major challenge in reinforcement learning is to determine which state-action pairs are responsible for future rewards that are delayed. Return Decomposition offers a solution by redistributing rewards from observed sequences while preserving policy invariance. While the majority of current approaches construct the reward redistribution in an uninterpretable manner, we propose to explicitly model the contributions of state and action from a causal perspective, resulting in an interpretable return decomposition. In this paper, we start by studying the role of causal generative models in return decomposition by characterizing the generation of Markovian rewards and trajectory-wise long-term return and further propose a framework, called Generative Return Decomposition (GRD), for policy optimization in delayed reward scenarios. Specifically, GRD first identifies the unobservable Markovian rewards and causal relations in the generative process. Then, GRD makes use of the identified causal generative model to form a compact representation to train policy over the most favorable subspace of the state space of the agent. Theoretically, we show that the unobservable Markovian reward function is identifiable, as well as the underlying causal structure and causal models. Experimental results show that our method outperforms state-of-the-art methods and the provided visualization further demonstrates the interpretability of our method.