Department of Control Science and Engineering, Zhejiang University, China
Abstract:Referring expression counting (REC) algorithms are for more flexible and interactive counting ability across varied fine-grained text expressions. However, the requirement for fine-grained attribute understanding poses challenges for prior arts, as they struggle to accurately align attribute information with correct visual patterns. Given the proven importance of ''visual density'', it is presumed that the limitations of current REC approaches stem from an under-exploration of ''contextual attribute density'' (CAD). In the scope of REC, we define CAD as the measure of the information intensity of one certain fine-grained attribute in visual regions. To model the CAD, we propose a U-shape CAD estimator in which referring expression and multi-scale visual features from GroundingDINO can interact with each other. With additional density supervision, we can effectively encode CAD, which is subsequently decoded via a novel attention procedure with CAD-refined queries. Integrating all these contributions, our framework significantly outperforms state-of-the-art REC methods, achieves $30\%$ error reduction in counting metrics and a $10\%$ improvement in localization accuracy. The surprising results shed light on the significance of contextual attribute density for REC. Code will be at github.com/Xu3XiWang/CAD-GD.
Abstract:In recommender systems, the patterns of user behaviors (e.g., purchase, click) may vary greatly in different contexts (e.g., time and location). This is because user behavior is jointly determined by two types of factors: intrinsic factors, which reflect consistent user preference, and extrinsic factors, which reflect external incentives that may vary in different contexts. Differentiating between intrinsic and extrinsic factors helps learn user behaviors better. However, existing studies have only considered differentiating them from a single, pre-defined context (e.g., time or location), ignoring the fact that a user's extrinsic factors may be influenced by the interplay of various contexts at the same time. In this paper, we propose the Intrinsic-Extrinsic Disentangled Recommendation (IEDR) model, a generic framework that differentiates intrinsic from extrinsic factors considering various contexts simultaneously, enabling more accurate differentiation of factors and hence the improvement of recommendation accuracy. IEDR contains a context-invariant contrastive learning component to capture intrinsic factors, and a disentanglement component to extract extrinsic factors under the interplay of various contexts. The two components work together to achieve effective factor learning. Extensive experiments on real-world datasets demonstrate IEDR's effectiveness in learning disentangled factors and significantly improving recommendation accuracy by up to 4% in NDCG.
Abstract:Large language models (LLMs) have shown impressive abilities in answering questions across various domains, but they often encounter hallucination issues on questions that require professional and up-to-date knowledge. To address this limitation, retrieval-augmented generation (RAG) techniques have been proposed, which retrieve relevant information from external sources to inform their responses. However, existing RAG methods typically focus on a single type of external data, such as vectorized text database or knowledge graphs, and cannot well handle real-world questions on semi-structured data containing both text and relational information. To bridge this gap, we introduce PASemiQA, a novel approach that jointly leverages text and relational information in semi-structured data to answer questions. PASemiQA first generates a plan to identify relevant text and relational information to answer the question in semi-structured data, and then uses an LLM agent to traverse the semi-structured data and extract necessary information. Our empirical results demonstrate the effectiveness of PASemiQA across different semi-structured datasets from various domains, showcasing its potential to improve the accuracy and reliability of question answering systems on semi-structured data.
Abstract:Constrained by weak signal strength and significant inter-cell interference, users located at the cell edge in a cellular network suffer from inferior service quality. Recently, cell-free massive MIMO (CFmMIMO) has gained considerable attention due to its capability to offer uniform quality of service, alleviating the cell-edge problem. In contrast to previous studies focused on narrow-band CFmMIMO systems, this paper studies wideband CFmMIMO communications against channel frequency selectivity. By exploiting the frequency-domain flexibility offered by orthogonal frequency-division multiplexing (OFDM), and leveraging a particular spatial characteristic in the cell-free structure -- namely, the near-far effect among distributed access points (APs) -- we propose an opportunistic approach to boost spectral efficiency. The core concept lies in opportunistically activating nearby APs for certain users across their assigned OFDM subcarriers while deactivating distant APs to prevent power wastage and lower inter-user interference. Furthermore, this approach enables the use of downlink pilots by reducing the number of active APs per subcarrier to a small subset, thereby substantially improving downlink performance through coherent detection at the user receiver. Verified by numerical results, our proposed approach demonstrates considerable performance improvement compared to the two benchmark approaches.
Abstract:Post-click conversion rate (CVR) estimation is a vital task in many recommender systems of revenue businesses, e.g., e-commerce and advertising. In a perspective of sample, a typical CVR positive sample usually goes through a funnel of exposure to click to conversion. For lack of post-event labels for un-clicked samples, CVR learning task commonly only utilizes clicked samples, rather than all exposed samples as for click-through rate (CTR) learning task. However, during online inference, CVR and CTR are estimated on the same assumed exposure space, which leads to a inconsistency of sample space between training and inference, i.e., sample selection bias (SSB). To alleviate SSB, previous wisdom proposes to design novel auxiliary tasks to enable the CVR learning on un-click training samples, such as CTCVR and counterfactual CVR, etc. Although alleviating SSB to some extent, none of them pay attention to the discrimination between ambiguous negative samples (un-clicked) and factual negative samples (clicked but un-converted) during modelling, which makes CVR model lacks robustness. To full this gap, we propose a novel ChorusCVR model to realize debiased CVR learning in entire-space.
Abstract:Image compression under ultra-low bitrates remains challenging for both conventional learned image compression (LIC) and generative vector-quantized (VQ) modeling. Conventional LIC suffers from severe artifacts due to heavy quantization, while generative VQ modeling gives poor fidelity due to the mismatch between learned generative priors and specific inputs. In this work, we propose Hybrid-Diffusion Image Compression (HDCompression), a dual-stream framework that utilizes both generative VQ-modeling and diffusion models, as well as conventional LIC, to achieve both high fidelity and high perceptual quality. Different from previous hybrid methods that directly use pre-trained LIC models to generate low-quality fidelity-preserving information from heavily quantized latent, we use diffusion models to extract high-quality complimentary fidelity information from the ground-truth input, which can enhance the system performance in several aspects: improving indices map prediction, enhancing the fidelity-preserving output of the LIC stream, and refining conditioned image reconstruction with VQ-latent correction. In addition, our diffusion model is based on a dense representative vector (DRV), which is lightweight with very simple sampling schedulers. Extensive experiments demonstrate that our HDCompression outperforms the previous conventional LIC, generative VQ-modeling, and hybrid frameworks in both quantitative metrics and qualitative visualization, providing balanced robust compression performance at ultra-low bitrates.
Abstract:Live-streaming, as a new-generation media to connect users and authors, has attracted a lot of attention and experienced rapid growth in recent years. Compared with the content-static short-video recommendation, the live-streaming recommendation faces more challenges in giving our users a satisfactory experience: (1) Live-streaming content is dynamically ever-changing along time. (2) valuable behaviors (e.g., send digital-gift, buy products) always require users to watch for a long-time (>10 min). Combining the two attributes, here raising a challenging question for live-streaming recommendation: How to discover the live-streamings that the content user is interested in at the current moment, and further a period in the future?
Abstract:Smoothness is crucial for attaining fast rates in first-order optimization. However, many optimization problems in modern machine learning involve non-smooth objectives. Recent studies relax the smoothness assumption by allowing the Lipschitz constant of the gradient to grow with respect to the gradient norm, which accommodates a broad range of objectives in practice. Despite this progress, existing generalizations of smoothness are restricted to Euclidean geometry with $\ell_2$-norm and only have theoretical guarantees for optimization in the Euclidean space. In this paper, we address this limitation by introducing a new $\ell*$-smoothness concept that measures the norm of Hessian in terms of a general norm and its dual, and establish convergence for mirror-descent-type algorithms, matching the rates under the classic smoothness. Notably, we propose a generalized self-bounding property that facilitates bounding the gradients via controlling suboptimality gaps, serving as a principal component for convergence analysis. Beyond deterministic optimization, we establish an anytime convergence for stochastic mirror descent based on a new bounded noise condition that encompasses the widely adopted bounded or affine noise assumptions.
Abstract:In neural video codecs, current state-of-the-art methods typically adopt multi-scale motion compensation to handle diverse motions. These methods estimate and compress either optical flow or deformable offsets to reduce inter-frame redundancy. However, flow-based methods often suffer from inaccurate motion estimation in complicated scenes. Deformable convolution-based methods are more robust but have a higher bit cost for motion coding. In this paper, we propose a hybrid context generation module, which combines the advantages of the above methods in an optimal way and achieves accurate compensation at a low bit cost. Specifically, considering the characteristics of features at different scales, we adopt flow-guided deformable compensation at largest-scale to produce accurate alignment in detailed regions. For smaller-scale features, we perform flow-based warping to save the bit cost for motion coding. Furthermore, we design a local-global context enhancement module to fully explore the local-global information of previous reconstructed signals. Experimental results demonstrate that our proposed Hybrid Local-Global Context learning (HLGC) method can significantly enhance the state-of-the-art methods on standard test datasets.
Abstract:Among various spatio-temporal prediction tasks, epidemic forecasting plays a critical role in public health management. Recent studies have demonstrated the strong potential of spatio-temporal graph neural networks (STGNNs) in extracting heterogeneous spatio-temporal patterns for epidemic forecasting. However, most of these methods bear an over-simplified assumption that two locations (e.g., cities) with similar observed features in previous time steps will develop similar infection numbers in the future. In fact, for any epidemic disease, there exists strong heterogeneity of its intrinsic evolution mechanisms across geolocation and time, which can eventually lead to diverged infection numbers in two ``similar'' locations. However, such mechanistic heterogeneity is non-trivial to be captured due to the existence of numerous influencing factors like medical resource accessibility, virus mutations, mobility patterns, etc., most of which are spatio-temporal yet unreachable or even unobservable. To address this challenge, we propose a Heterogeneous Epidemic-Aware Transmission Graph Neural Network (HeatGNN), a novel epidemic forecasting framework. By binding the epidemiology mechanistic model into a GNN, HeatGNN learns epidemiology-informed location embeddings of different locations that reflect their own transmission mechanisms over time. With the time-varying mechanistic affinity graphs computed with the epidemiology-informed location embeddings, a heterogeneous transmission graph network is designed to encode the mechanistic heterogeneity among locations, providing additional predictive signals to facilitate accurate forecasting. Experiments on three benchmark datasets have revealed that HeatGNN outperforms various strong baselines. Moreover, our efficiency analysis verifies the real-world practicality of HeatGNN on datasets of different sizes.