Department of Control Science and Engineering, Zhejiang University, China
Abstract:In neural video codecs, current state-of-the-art methods typically adopt multi-scale motion compensation to handle diverse motions. These methods estimate and compress either optical flow or deformable offsets to reduce inter-frame redundancy. However, flow-based methods often suffer from inaccurate motion estimation in complicated scenes. Deformable convolution-based methods are more robust but have a higher bit cost for motion coding. In this paper, we propose a hybrid context generation module, which combines the advantages of the above methods in an optimal way and achieves accurate compensation at a low bit cost. Specifically, considering the characteristics of features at different scales, we adopt flow-guided deformable compensation at largest-scale to produce accurate alignment in detailed regions. For smaller-scale features, we perform flow-based warping to save the bit cost for motion coding. Furthermore, we design a local-global context enhancement module to fully explore the local-global information of previous reconstructed signals. Experimental results demonstrate that our proposed Hybrid Local-Global Context learning (HLGC) method can significantly enhance the state-of-the-art methods on standard test datasets.
Abstract:Among various spatio-temporal prediction tasks, epidemic forecasting plays a critical role in public health management. Recent studies have demonstrated the strong potential of spatio-temporal graph neural networks (STGNNs) in extracting heterogeneous spatio-temporal patterns for epidemic forecasting. However, most of these methods bear an over-simplified assumption that two locations (e.g., cities) with similar observed features in previous time steps will develop similar infection numbers in the future. In fact, for any epidemic disease, there exists strong heterogeneity of its intrinsic evolution mechanisms across geolocation and time, which can eventually lead to diverged infection numbers in two ``similar'' locations. However, such mechanistic heterogeneity is non-trivial to be captured due to the existence of numerous influencing factors like medical resource accessibility, virus mutations, mobility patterns, etc., most of which are spatio-temporal yet unreachable or even unobservable. To address this challenge, we propose a Heterogeneous Epidemic-Aware Transmission Graph Neural Network (HeatGNN), a novel epidemic forecasting framework. By binding the epidemiology mechanistic model into a GNN, HeatGNN learns epidemiology-informed location embeddings of different locations that reflect their own transmission mechanisms over time. With the time-varying mechanistic affinity graphs computed with the epidemiology-informed location embeddings, a heterogeneous transmission graph network is designed to encode the mechanistic heterogeneity among locations, providing additional predictive signals to facilitate accurate forecasting. Experiments on three benchmark datasets have revealed that HeatGNN outperforms various strong baselines. Moreover, our efficiency analysis verifies the real-world practicality of HeatGNN on datasets of different sizes.
Abstract:The rapid spread of rumors on social media has posed significant challenges to maintaining public trust and information integrity. Since an information cascade process is essentially a propagation tree, recent rumor detection models leverage graph neural networks to additionally capture information propagation patterns, thus outperforming text-only solutions. Given the variations in topics and social impact of the root node, different source information naturally has distinct outreach capabilities, resulting in different heights of propagation trees. This variation, however, impedes the data-driven design of existing graph-based rumor detectors. Given a shallow propagation tree with limited interactions, it is unlikely for graph-based approaches to capture sufficient cascading patterns, questioning their ability to handle less popular news or early detection needs. In contrast, a deep propagation tree is prone to noisy user responses, and this can in turn obfuscate the predictions. In this paper, we propose a novel Epidemiology-informed Network (EIN) that integrates epidemiological knowledge to enhance performance by overcoming data-driven methods sensitivity to data quality. Meanwhile, to adapt epidemiology theory to rumor detection, it is expected that each users stance toward the source information will be annotated. To bypass the costly and time-consuming human labeling process, we take advantage of large language models to generate stance labels, facilitating optimization objectives for learning epidemiology-informed representations. Our experimental results demonstrate that the proposed EIN not only outperforms state-of-the-art methods on real-world datasets but also exhibits enhanced robustness across varying tree depths.
Abstract:In Learned Video Compression (LVC), improving inter prediction, such as enhancing temporal context mining and mitigating accumulated errors, is crucial for boosting rate-distortion performance. Existing LVCs mainly focus on mining the temporal movements within adjacent frames, neglecting non-local correlations among frames. Additionally, current contextual video compression models use a single reference frame, which is insufficient for handling complex movements. To address these issues, we propose leveraging non-local correlations across multiple frames to enhance temporal priors, significantly boosting rate-distortion performance. To mitigate error accumulation, we introduce a partial cascaded fine-tuning strategy that supports fine-tuning on full-length sequences with constrained computational resources. This method reduces the train-test mismatch in sequence lengths and significantly decreases accumulated errors. Based on the proposed techniques, we present a video compression scheme ECVC. Experiments demonstrate that our ECVC achieves state-of-the-art performance, reducing 7.3% and 10.5% more bit-rates than DCVC-DC and DCVC-FM over VTM-13.2 low delay B (LDB), respectively, when the intra period (IP) is 32. Additionally, ECVC reduces 11.1% more bit-rate than DCVC-FM over VTM-13.2 LDB when the IP is -1. Our Code will be available at https://github.com/JiangWeibeta/ECVC.
Abstract:Recent advancements in UAV technology have spurred interest in developing multi-UAV aerial surveying systems for use in confined environments where GNSS signals are blocked or jammed. This paper focuses airborne magnetic surveying scenarios. To obtain clean magnetic measurements reflecting the Earth's magnetic field, the magnetic sensor must be isolated from other electronic devices, creating a significant localization challenge. We propose a visual cooperative localization solution. The solution incorporates a visual processing module and an improved manifold-based sensor fusion algorithm, delivering reliable and accurate positioning information. Real flight experiments validate the approach, demonstrating single-axis centimeter-level accuracy and decimeter-level overall 3D positioning accuracy.
Abstract:Image restoration methods like super-resolution and image synthesis have been successfully used in commercial cloud gaming products like NVIDIA's DLSS. However, restoration over gaming content is not well studied by the general public. The discrepancy is mainly caused by the lack of ground-truth gaming training data that match the test cases. Due to the unique characteristics of gaming content, the common approach of generating pseudo training data by degrading the original HR images results in inferior restoration performance. In this work, we develop GameIR, a large-scale high-quality computer-synthesized ground-truth dataset to fill in the blanks, targeting at two different applications. The first is super-resolution with deferred rendering, to support the gaming solution of rendering and transferring LR images only and restoring HR images on the client side. We provide 19200 LR-HR paired ground-truth frames coming from 640 videos rendered at 720p and 1440p for this task. The second is novel view synthesis (NVS), to support the multiview gaming solution of rendering and transferring part of the multiview frames and generating the remaining frames on the client side. This task has 57,600 HR frames from 960 videos of 160 scenes with 6 camera views. In addition to the RGB frames, the GBuffers during the deferred rendering stage are also provided, which can be used to help restoration. Furthermore, we evaluate several SOTA super-resolution algorithms and NeRF-based NVS algorithms over our dataset, which demonstrates the effectiveness of our ground-truth GameIR data in improving restoration performance for gaming content. Also, we test the method of incorporating the GBuffers as additional input information for helping super-resolution and NVS. We release our dataset and models to the general public to facilitate research on restoration methods over gaming content.
Abstract:Cell-free massive multi-input multi-output (CFmMIMO) offers uniform service quality through distributed access points (APs), yet unresolved issues remain. This paper proposes a heterogeneous system design that goes beyond the original CFmMIMO architecture by exploiting the synergy of a base station (BS) and distributed APs. Users are categorized as near users (NUs) and far users (FUs) depending on their proximity to the BS. The BS serves the NUs, while the APs cater to the FUs. Through activating only the closest AP of each FU, the use of downlink pilots is enabled, thereby enhancing performance. This heterogeneous design outperforms other homogeneous massive MIMO configurations, demonstrating superior sum capacity while maintaining comparable user-experienced rates. Moreover, it lowers the costs associated with AP installations and reduces signaling overhead for the fronthaul network.
Abstract:Deep Neural Networks (DNNs) have found extensive applications in safety-critical artificial intelligence systems, such as autonomous driving and facial recognition systems. However, recent research has revealed their susceptibility to Neural Network Trojans (NN Trojans) maliciously injected by adversaries. This vulnerability arises due to the intricate architecture and opacity of DNNs, resulting in numerous redundant neurons embedded within the models. Adversaries exploit these vulnerabilities to conceal malicious Trojans within DNNs, thereby causing erroneous outputs and posing substantial threats to the efficacy of DNN-based applications. This article presents a comprehensive survey of Trojan attacks against DNNs and the countermeasure methods employed to mitigate them. Initially, we trace the evolution of the concept from traditional Trojans to NN Trojans, highlighting the feasibility and practicality of generating NN Trojans. Subsequently, we provide an overview of notable works encompassing various attack and defense strategies, facilitating a comparative analysis of their approaches. Through these discussions, we offer constructive insights aimed at refining these techniques. In recognition of the gravity and immediacy of this subject matter, we also assess the feasibility of deploying such attacks in real-world scenarios as opposed to controlled ideal datasets. The potential real-world implications underscore the urgency of addressing this issue effectively.
Abstract:Urban flow prediction is a spatio-temporal modeling task that estimates the throughput of transportation services like buses, taxis, and ride-sharing, where data-driven models have become the most popular solution in the past decade. Meanwhile, the implicitly learned mapping between historical observations to the prediction targets tend to over-simplify the dynamics of real-world urban flows, leading to suboptimal predictions. Some recent spatio-temporal prediction solutions bring remedies with the notion of physics-guided machine learning (PGML), which describes spatio-temporal data with nuanced and principled physics laws, thus enhancing both the prediction accuracy and interpretability. However, these spatio-temporal PGML methods are built upon a strong assumption that the observed data fully conforms to the differential equations that define the physical system, which can quickly become ill-posed in urban flow prediction tasks. The observed urban flow data, especially when sliced into time-dependent snapshots to facilitate predictions, is typically incomplete and sparse, and prone to inherent noise incurred in the collection process. As a result, such physical inconsistency between the data and PGML model significantly limits the predictive power and robustness of the solution. Moreover, due to the interval-based predictions and intermittent nature of data filing in many transportation services, the instantaneous dynamics of urban flows can hardly be captured, rendering differential equation-based continuous modeling a loose fit for this setting. To overcome the challenges, we develop a discretized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR) to enhance PN. Experimental results in four real-world datasets demonstrate that our method achieves state-of-the-art performance with a demonstrable improvement in robustness.
Abstract:High dynamic range (HDR) video rendering from low dynamic range (LDR) videos where frames are of alternate exposure encounters significant challenges, due to the exposure change and absence at each time stamp. The exposure change and absence make existing methods generate flickering HDR results. In this paper, we propose a novel paradigm to render HDR frames via completing the absent exposure information, hence the exposure information is complete and consistent. Our approach involves interpolating neighbor LDR frames in the time dimension to reconstruct LDR frames for the absent exposures. Combining the interpolated and given LDR frames, the complete set of exposure information is available at each time stamp. This benefits the fusing process for HDR results, reducing noise and ghosting artifacts therefore improving temporal consistency. Extensive experimental evaluations on standard benchmarks demonstrate that our method achieves state-of-the-art performance, highlighting the importance of absent exposure completing in HDR video rendering. The code is available at https://github.com/cuijiahao666/NECHDR.