Department of Control Science and Engineering, Zhejiang University, China
Abstract:In Learned Video Compression (LVC), improving inter prediction, such as enhancing temporal context mining and mitigating accumulated errors, is crucial for boosting rate-distortion performance. Existing LVCs mainly focus on mining the temporal movements within adjacent frames, neglecting non-local correlations among frames. Additionally, current contextual video compression models use a single reference frame, which is insufficient for handling complex movements. To address these issues, we propose leveraging non-local correlations across multiple frames to enhance temporal priors, significantly boosting rate-distortion performance. To mitigate error accumulation, we introduce a partial cascaded fine-tuning strategy that supports fine-tuning on full-length sequences with constrained computational resources. This method reduces the train-test mismatch in sequence lengths and significantly decreases accumulated errors. Based on the proposed techniques, we present a video compression scheme ECVC. Experiments demonstrate that our ECVC achieves state-of-the-art performance, reducing 7.3% and 10.5% more bit-rates than DCVC-DC and DCVC-FM over VTM-13.2 low delay B (LDB), respectively, when the intra period (IP) is 32. Additionally, ECVC reduces 11.1% more bit-rate than DCVC-FM over VTM-13.2 LDB when the IP is -1. Our Code will be available at https://github.com/JiangWeibeta/ECVC.
Abstract:Recent advancements in UAV technology have spurred interest in developing multi-UAV aerial surveying systems for use in confined environments where GNSS signals are blocked or jammed. This paper focuses airborne magnetic surveying scenarios. To obtain clean magnetic measurements reflecting the Earth's magnetic field, the magnetic sensor must be isolated from other electronic devices, creating a significant localization challenge. We propose a visual cooperative localization solution. The solution incorporates a visual processing module and an improved manifold-based sensor fusion algorithm, delivering reliable and accurate positioning information. Real flight experiments validate the approach, demonstrating single-axis centimeter-level accuracy and decimeter-level overall 3D positioning accuracy.
Abstract:Image restoration methods like super-resolution and image synthesis have been successfully used in commercial cloud gaming products like NVIDIA's DLSS. However, restoration over gaming content is not well studied by the general public. The discrepancy is mainly caused by the lack of ground-truth gaming training data that match the test cases. Due to the unique characteristics of gaming content, the common approach of generating pseudo training data by degrading the original HR images results in inferior restoration performance. In this work, we develop GameIR, a large-scale high-quality computer-synthesized ground-truth dataset to fill in the blanks, targeting at two different applications. The first is super-resolution with deferred rendering, to support the gaming solution of rendering and transferring LR images only and restoring HR images on the client side. We provide 19200 LR-HR paired ground-truth frames coming from 640 videos rendered at 720p and 1440p for this task. The second is novel view synthesis (NVS), to support the multiview gaming solution of rendering and transferring part of the multiview frames and generating the remaining frames on the client side. This task has 57,600 HR frames from 960 videos of 160 scenes with 6 camera views. In addition to the RGB frames, the GBuffers during the deferred rendering stage are also provided, which can be used to help restoration. Furthermore, we evaluate several SOTA super-resolution algorithms and NeRF-based NVS algorithms over our dataset, which demonstrates the effectiveness of our ground-truth GameIR data in improving restoration performance for gaming content. Also, we test the method of incorporating the GBuffers as additional input information for helping super-resolution and NVS. We release our dataset and models to the general public to facilitate research on restoration methods over gaming content.
Abstract:Cell-free massive multi-input multi-output (CFmMIMO) offers uniform service quality through distributed access points (APs), yet unresolved issues remain. This paper proposes a heterogeneous system design that goes beyond the original CFmMIMO architecture by exploiting the synergy of a base station (BS) and distributed APs. Users are categorized as near users (NUs) and far users (FUs) depending on their proximity to the BS. The BS serves the NUs, while the APs cater to the FUs. Through activating only the closest AP of each FU, the use of downlink pilots is enabled, thereby enhancing performance. This heterogeneous design outperforms other homogeneous massive MIMO configurations, demonstrating superior sum capacity while maintaining comparable user-experienced rates. Moreover, it lowers the costs associated with AP installations and reduces signaling overhead for the fronthaul network.
Abstract:Deep Neural Networks (DNNs) have found extensive applications in safety-critical artificial intelligence systems, such as autonomous driving and facial recognition systems. However, recent research has revealed their susceptibility to Neural Network Trojans (NN Trojans) maliciously injected by adversaries. This vulnerability arises due to the intricate architecture and opacity of DNNs, resulting in numerous redundant neurons embedded within the models. Adversaries exploit these vulnerabilities to conceal malicious Trojans within DNNs, thereby causing erroneous outputs and posing substantial threats to the efficacy of DNN-based applications. This article presents a comprehensive survey of Trojan attacks against DNNs and the countermeasure methods employed to mitigate them. Initially, we trace the evolution of the concept from traditional Trojans to NN Trojans, highlighting the feasibility and practicality of generating NN Trojans. Subsequently, we provide an overview of notable works encompassing various attack and defense strategies, facilitating a comparative analysis of their approaches. Through these discussions, we offer constructive insights aimed at refining these techniques. In recognition of the gravity and immediacy of this subject matter, we also assess the feasibility of deploying such attacks in real-world scenarios as opposed to controlled ideal datasets. The potential real-world implications underscore the urgency of addressing this issue effectively.
Abstract:Urban flow prediction is a spatio-temporal modeling task that estimates the throughput of transportation services like buses, taxis, and ride-sharing, where data-driven models have become the most popular solution in the past decade. Meanwhile, the implicitly learned mapping between historical observations to the prediction targets tend to over-simplify the dynamics of real-world urban flows, leading to suboptimal predictions. Some recent spatio-temporal prediction solutions bring remedies with the notion of physics-guided machine learning (PGML), which describes spatio-temporal data with nuanced and principled physics laws, thus enhancing both the prediction accuracy and interpretability. However, these spatio-temporal PGML methods are built upon a strong assumption that the observed data fully conforms to the differential equations that define the physical system, which can quickly become ill-posed in urban flow prediction tasks. The observed urban flow data, especially when sliced into time-dependent snapshots to facilitate predictions, is typically incomplete and sparse, and prone to inherent noise incurred in the collection process. As a result, such physical inconsistency between the data and PGML model significantly limits the predictive power and robustness of the solution. Moreover, due to the interval-based predictions and intermittent nature of data filing in many transportation services, the instantaneous dynamics of urban flows can hardly be captured, rendering differential equation-based continuous modeling a loose fit for this setting. To overcome the challenges, we develop a discretized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR) to enhance PN. Experimental results in four real-world datasets demonstrate that our method achieves state-of-the-art performance with a demonstrable improvement in robustness.
Abstract:High dynamic range (HDR) video rendering from low dynamic range (LDR) videos where frames are of alternate exposure encounters significant challenges, due to the exposure change and absence at each time stamp. The exposure change and absence make existing methods generate flickering HDR results. In this paper, we propose a novel paradigm to render HDR frames via completing the absent exposure information, hence the exposure information is complete and consistent. Our approach involves interpolating neighbor LDR frames in the time dimension to reconstruct LDR frames for the absent exposures. Combining the interpolated and given LDR frames, the complete set of exposure information is available at each time stamp. This benefits the fusing process for HDR results, reducing noise and ghosting artifacts therefore improving temporal consistency. Extensive experimental evaluations on standard benchmarks demonstrate that our method achieves state-of-the-art performance, highlighting the importance of absent exposure completing in HDR video rendering. The code is available at https://github.com/cuijiahao666/NECHDR.
Abstract:Recently, energy encryption for wireless power transfer has been developed for energy safety, which is important in public places to suppress unauthorized energy extraction. Most techniques vary the frequency so that unauthorized receivers cannot extract energy because of non-resonance. However, this strategy is unreliable. To stimulate the progress of energy encryption technology and point out security holes, this paper proposes a decryption method for the fundamental principle of encrypted frequency-varying wireless power transfer. The paper uses an auxiliary coil to detect the frequency and a switched-capacitor array to adaptively compensate the receiver for a wide frequency range. The switched-capacitor array contains two capacitors and one semi-conductor switch. One capacitor compensates the receiver all the time while the other's active time during one wireless power transfer cycle is regulated by the switch. Thus, the proposed hacking receiver controls the equivalent capacitance of the compensation and steals energy. Finally, a detailed simulation model and experimental results prove the effectiveness of the attack on frequency-hopping energy encryption. Although any nonnegligible energy extracted would be problematic, we achieved to steal 78% to 84% of the energy an authorized receiver could get. When the frequency changes, the interceptor is coarsely tuned very quickly, which can hack fast frequency-varying encrypted system.
Abstract:This paper investigates projection-free algorithms for stochastic constrained multi-level optimization. In this context, the objective function is a nested composition of several smooth functions, and the decision set is closed and convex. Existing projection-free algorithms for solving this problem suffer from two limitations: 1) they solely focus on the gradient mapping criterion and fail to match the optimal sample complexities in unconstrained settings; 2) their analysis is exclusively applicable to non-convex functions, without considering convex and strongly convex objectives. To address these issues, we introduce novel projection-free variance reduction algorithms and analyze their complexities under different criteria. For gradient mapping, our complexities improve existing results and match the optimal rates for unconstrained problems. For the widely-used Frank-Wolfe gap criterion, we provide theoretical guarantees that align with those for single-level problems. Additionally, by using a stage-wise adaptation, we further obtain complexities for convex and strongly convex functions. Finally, numerical experiments on different tasks demonstrate the effectiveness of our methods.
Abstract:This paper explores adaptive variance reduction methods for stochastic optimization based on the STORM technique. Existing adaptive extensions of STORM rely on strong assumptions like bounded gradients and bounded function values, or suffer an additional $\mathcal{O}(\log T)$ term in the convergence rate. To address these limitations, we introduce a novel adaptive STORM method that achieves an optimal convergence rate of $\mathcal{O}(T^{-1/3})$ for non-convex functions with our newly designed learning rate strategy. Compared with existing approaches, our method requires weaker assumptions and attains the optimal convergence rate without the additional $\mathcal{O}(\log T)$ term. We also extend the proposed technique to stochastic compositional optimization, obtaining the same optimal rate of $\mathcal{O}(T^{-1/3})$. Furthermore, we investigate the non-convex finite-sum problem and develop another innovative adaptive variance reduction method that achieves an optimal convergence rate of $\mathcal{O}(n^{1/4} T^{-1/2} )$, where $n$ represents the number of component functions. Numerical experiments across various tasks validate the effectiveness of our method.