Abstract:Recently, the success of text-to-image synthesis has greatly advanced the development of identity customization techniques, whose main goal is to produce realistic identity-specific photographs based on text prompts and reference face images. However, it is difficult for existing identity customization methods to simultaneously meet the various requirements of different real-world applications, including the identity fidelity of small face, the control of face location, pose and expression, as well as the customization of multiple persons. To this end, we propose a scale-robust and fine-controllable method, namely RealisID, which learns different control capabilities through the cooperation between a pair of local and global branches. Specifically, by using cropping and up-sampling operations to filter out face-irrelevant information, the local branch concentrates the fine control of facial details and the scale-robust identity fidelity within the face region. Meanwhile, the global branch manages the overall harmony of the entire image. It also controls the face location by taking the location guidance as input. As a result, RealisID can benefit from the complementarity of these two branches. Finally, by implementing our branches with two different variants of ControlNet, our method can be easily extended to handle multi-person customization, even only trained on single-person datasets. Extensive experiments and ablation studies indicate the effectiveness of RealisID and verify its ability in fulfilling all the requirements mentioned above.
Abstract:The gait, as a kind of soft biometric characteristic, can reflect the distinct walking patterns of individuals at a distance, exhibiting a promising technique for unrestrained human identification. With largely excluding gait-unrelated cues hidden in RGB videos, the silhouette and skeleton, though visually compact, have acted as two of the most prevailing gait modalities for a long time. Recently, several attempts have been made to introduce more informative data forms like human parsing and optical flow images to capture gait characteristics, along with multi-branch architectures. However, due to the inconsistency within model designs and experiment settings, we argue that a comprehensive and fair comparative study among these popular gait modalities, involving the representational capacity and fusion strategy exploration, is still lacking. From the perspectives of fine vs. coarse-grained shape and whole vs. pixel-wise motion modeling, this work presents an in-depth investigation of three popular gait representations, i.e., silhouette, human parsing, and optical flow, with various fusion evaluations, and experimentally exposes their similarities and differences. Based on the obtained insights, we further develop a C$^2$Fusion strategy, consequently building our new framework MultiGait++. C$^2$Fusion preserves commonalities while highlighting differences to enrich the learning of gait features. To verify our findings and conclusions, extensive experiments on Gait3D, GREW, CCPG, and SUSTech1K are conducted. The code is available at https://github.com/ShiqiYu/OpenGait.
Abstract:This paper studies the challenging task of makeup transfer, which aims to apply diverse makeup styles precisely and naturally to a given facial image. Due to the absence of paired data, current methods typically synthesize sub-optimal pseudo ground truths to guide the model training, resulting in low makeup fidelity. Additionally, different makeup styles generally have varying effects on the person face, but existing methods struggle to deal with this diversity. To address these issues, we propose a novel Self-supervised Hierarchical Makeup Transfer (SHMT) method via latent diffusion models. Following a "decoupling-and-reconstruction" paradigm, SHMT works in a self-supervised manner, freeing itself from the misguidance of imprecise pseudo-paired data. Furthermore, to accommodate a variety of makeup styles, hierarchical texture details are decomposed via a Laplacian pyramid and selectively introduced to the content representation. Finally, we design a novel Iterative Dual Alignment (IDA) module that dynamically adjusts the injection condition of the diffusion model, allowing the alignment errors caused by the domain gap between content and makeup representations to be corrected. Extensive quantitative and qualitative analyses demonstrate the effectiveness of our method. Our code is available at \url{https://github.com/Snowfallingplum/SHMT}.
Abstract:Controllable character animation is an emerging task that generates character videos controlled by pose sequences from given character images. Although character consistency has made significant progress via reference UNet, another crucial factor, pose control, has not been well studied by existing methods yet, resulting in several issues: 1) The generation may fail when the input pose sequence is corrupted. 2) The hands generated using the DWPose sequence are blurry and unrealistic. 3) The generated video will be shaky if the pose sequence is not smooth enough. In this paper, we present RealisDance to handle all the above issues. RealisDance adaptively leverages three types of poses, avoiding failed generation caused by corrupted pose sequences. Among these pose types, HaMeR provides accurate 3D and depth information of hands, enabling RealisDance to generate realistic hands even for complex gestures. Besides using temporal attention in the main UNet, RealisDance also inserts temporal attention into the pose guidance network, smoothing the video from the pose condition aspect. Moreover, we introduce pose shuffle augmentation during training to further improve generation robustness and video smoothness. Qualitative experiments demonstrate the superiority of RealisDance over other existing methods, especially in hand quality.
Abstract:In recent years, diffusion models have revolutionized visual generation, outperforming traditional frameworks like Generative Adversarial Networks (GANs). However, generating images of humans with realistic semantic parts, such as hands and faces, remains a significant challenge due to their intricate structural complexity. To address this issue, we propose a novel post-processing solution named RealisHuman. The RealisHuman framework operates in two stages. First, it generates realistic human parts, such as hands or faces, using the original malformed parts as references, ensuring consistent details with the original image. Second, it seamlessly integrates the rectified human parts back into their corresponding positions by repainting the surrounding areas to ensure smooth and realistic blending. The RealisHuman framework significantly enhances the realism of human generation, as demonstrated by notable improvements in both qualitative and quantitative metrics. Code is available at https://github.com/Wangbenzhi/RealisHuman.
Abstract:Vanilla text-to-image diffusion models struggle with generating accurate human images, commonly resulting in imperfect anatomies such as unnatural postures or disproportionate limbs.Existing methods address this issue mostly by fine-tuning the model with extra images or adding additional controls -- human-centric priors such as pose or depth maps -- during the image generation phase. This paper explores the integration of these human-centric priors directly into the model fine-tuning stage, essentially eliminating the need for extra conditions at the inference stage. We realize this idea by proposing a human-centric alignment loss to strengthen human-related information from the textual prompts within the cross-attention maps. To ensure semantic detail richness and human structural accuracy during fine-tuning, we introduce scale-aware and step-wise constraints within the diffusion process, according to an in-depth analysis of the cross-attention layer. Extensive experiments show that our method largely improves over state-of-the-art text-to-image models to synthesize high-quality human images based on user-written prompts. Project page: \url{https://hcplayercvpr2024.github.io}.
Abstract:Person Re-identification (ReID) plays a more and more crucial role in recent years with a wide range of applications. Existing ReID methods are suffering from the challenges of misalignment and occlusions, which degrade the performance dramatically. Most methods tackle such challenges by utilizing external tools to locate body parts or exploiting matching strategies. Nevertheless, the inevitable domain gap between the datasets utilized for external tools and the ReID datasets and the complicated matching process make these methods unreliable and sensitive to noises. In this paper, we propose a Region Generation and Assessment Network (RGANet) to effectively and efficiently detect the human body regions and highlight the important regions. In the proposed RGANet, we first devise a Region Generation Module (RGM) which utilizes the pre-trained CLIP to locate the human body regions using semantic prototypes extracted from text descriptions. Learnable prompt is designed to eliminate domain gap between CLIP datasets and ReID datasets. Then, to measure the importance of each generated region, we introduce a Region Assessment Module (RAM) that assigns confidence scores to different regions and reduces the negative impact of the occlusion regions by lower scores. The RAM consists of a discrimination-aware indicator and an invariance-aware indicator, where the former indicates the capability to distinguish from different identities and the latter represents consistency among the images of the same class of human body regions. Extensive experimental results for six widely-used benchmarks including three tasks (occluded, partial, and holistic) demonstrate the superiority of RGANet against state-of-the-art methods.
Abstract:Image-text retrieval is a central problem for understanding the semantic relationship between vision and language, and serves as the basis for various visual and language tasks. Most previous works either simply learn coarse-grained representations of the overall image and text, or elaborately establish the correspondence between image regions or pixels and text words. However, the close relations between coarse- and fine-grained representations for each modality are important for image-text retrieval but almost neglected. As a result, such previous works inevitably suffer from low retrieval accuracy or heavy computational cost. In this work, we address image-text retrieval from a novel perspective by combining coarse- and fine-grained representation learning into a unified framework. This framework is consistent with human cognition, as humans simultaneously pay attention to the entire sample and regional elements to understand the semantic content. To this end, a Token-Guided Dual Transformer (TGDT) architecture which consists of two homogeneous branches for image and text modalities, respectively, is proposed for image-text retrieval. The TGDT incorporates both coarse- and fine-grained retrievals into a unified framework and beneficially leverages the advantages of both retrieval approaches. A novel training objective called Consistent Multimodal Contrastive (CMC) loss is proposed accordingly to ensure the intra- and inter-modal semantic consistencies between images and texts in the common embedding space. Equipped with a two-stage inference method based on the mixed global and local cross-modal similarity, the proposed method achieves state-of-the-art retrieval performances with extremely low inference time when compared with representative recent approaches.
Abstract:Visual retrieval tasks such as image retrieval and person re-identification (Re-ID) aim at effectively and thoroughly searching images with similar content or the same identity. After obtaining retrieved examples, re-ranking is a widely adopted post-processing step to reorder and improve the initial retrieval results by making use of the contextual information from semantically neighboring samples. Prevailing re-ranking approaches update distance metrics and mostly rely on inefficient crosscheck set comparison operations while computing expanded neighbors based distances. In this work, we present an efficient re-ranking method which refines initial retrieval results by updating features. Specifically, we reformulate re-ranking based on Graph Convolution Networks (GCN) and propose a novel Graph Convolution based Re-ranking (GCR) for visual retrieval tasks via feature propagation. To accelerate computation for large-scale retrieval, a decentralized and synchronous feature propagation algorithm which supports parallel or distributed computing is introduced. In particular, the plain GCR is extended for cross-camera retrieval and an improved feature propagation formulation is presented to leverage affinity relationships across different cameras. It is also extended for video-based retrieval, and Graph Convolution based Re-ranking for Video (GCRV) is proposed by mathematically deriving a novel profile vector generation method for the tracklet. Without bells and whistles, the proposed approaches achieve state-of-the-art performances on seven benchmark datasets from three different tasks, i.e., image retrieval, person Re-ID and video-based person Re-ID.
Abstract:Knowledge distillation is an effective paradigm for boosting the performance of pocket-size model, especially when multiple teacher models are available, the student would break the upper limit again. However, it is not economical to train diverse teacher models for the disposable distillation. In this paper, we introduce a new concept dubbed Avatars for distillation, which are the inference ensemble models derived from the teacher. Concretely, (1) For each iteration of distillation training, various Avatars are generated by a perturbation transformation. We validate that Avatars own higher upper limit of working capacity and teaching ability, aiding the student model in learning diverse and receptive knowledge perspectives from the teacher model. (2) During the distillation, we propose an uncertainty-aware factor from the variance of statistical differences between the vanilla teacher and Avatars, to adjust Avatars' contribution on knowledge transfer adaptively. Avatar Knowledge Distillation AKD is fundamentally different from existing methods and refines with the innovative view of unequal training. Comprehensive experiments demonstrate the effectiveness of our Avatars mechanism, which polishes up the state-of-the-art distillation methods for dense prediction without more extra computational cost. The AKD brings at most 0.7 AP gains on COCO 2017 for Object Detection and 1.83 mIoU gains on Cityscapes for Semantic Segmentation, respectively.