Abstract:Standard Bayesian Optimization (BO) assumes uniform smoothness across the search space an assumption violated in multi-regime problems such as molecular conformation search through distinct energy basins or drug discovery across heterogeneous molecular scaffolds. A single GP either oversmooths sharp transitions or hallucinates noise in smooth regions, yielding miscalibrated uncertainty. We propose RAMBO, a Dirichlet Process Mixture of Gaussian Processes that automatically discovers latent regimes during optimization, each modeled by an independent GP with locally-optimized hyperparameters. We derive collapsed Gibbs sampling that analytically marginalizes latent functions for efficient inference, and introduce adaptive concentration parameter scheduling for coarse-to-fine regime discovery. Our acquisition functions decompose uncertainty into intra-regime and inter-regime components. Experiments on synthetic benchmarks and real-world applications, including molecular conformer optimization, virtual screening for drug discovery, and fusion reactor design, demonstrate consistent improvements over state-of-the-art baselines on multi-regime objectives.
Abstract:The automated creation of digital twins and precise asset inventories is a critical task in smart city construction and facility lifecycle management. However, utilizing cost-effective sparse imagery remains challenging due to limited robustness, inaccurate localization, and a lack of fine-grained state understanding. To address these limitations, SVII-3D, a unified framework for holistic asset digitization, is proposed. First, LoRA fine-tuned open-set detection is fused with a spatial-attention matching network to robustly associate observations across sparse views. Second, a geometry-guided refinement mechanism is introduced to resolve structural errors, achieving precise decimeter-level 3D localization. Third, transcending static geometric mapping, a Vision-Language Model agent leveraging multi-modal prompting is incorporated to automatically diagnose fine-grained operational states. Experiments demonstrate that SVII-3D significantly improves identification accuracy and minimizes localization errors. Consequently, this framework offers a scalable, cost-effective solution for high-fidelity infrastructure digitization, effectively bridging the gap between sparse perception and automated intelligent maintenance.
Abstract:Automated perception of urban roadside infrastructure is crucial for smart city management, yet general-purpose models often struggle to capture the necessary fine-grained attributes and domain rules. While Large Vision Language Models (VLMs) excel at open-world recognition, they often struggle to accurately interpret complex facility states in compliance with engineering standards, leading to unreliable performance in real-world applications. To address this, we propose a domain-adapted framework that transforms VLMs into specialized agents for intelligent infrastructure analysis. Our approach integrates a data-efficient fine-tuning strategy with a knowledge-grounded reasoning mechanism. Specifically, we leverage open-vocabulary fine-tuning on Grounding DINO to robustly localize diverse assets with minimal supervision, followed by LoRA-based adaptation on Qwen-VL for deep semantic attribute reasoning. To mitigate hallucinations and enforce professional compliance, we introduce a dual-modality Retrieval-Augmented Generation (RAG) module that dynamically retrieves authoritative industry standards and visual exemplars during inference. Evaluated on a comprehensive new dataset of urban roadside scenes, our framework achieves a detection performance of 58.9 mAP and an attribute recognition accuracy of 95.5%, demonstrating a robust solution for intelligent infrastructure monitoring.
Abstract:Computational narrative analysis aims to capture rhythm, tension, and emotional dynamics in literary texts. Existing large language models can generate long stories but overly focus on causal coherence, neglecting the complex story arcs and orchestration inherent in human narratives. This creates a structural misalignment between model- and human-generated narratives. We propose VISTA Space, a high-dimensional representational framework for narrative orchestration that unifies human and model narrative perspectives. We further introduce LitVISTA, a structurally annotated benchmark grounded in literary texts, enabling systematic evaluation of models' narrative orchestration capabilities. We conduct oracle evaluations on a diverse selection of frontier LLMs, including GPT, Claude, Grok, and Gemini. Results reveal systematic deficiencies: existing models fail to construct a unified global narrative view, struggling to jointly capture narrative function and structure. Furthermore, even advanced thinking modes yield only limited gains for such literary narrative understanding.
Abstract:Automated front-end engineering drastically reduces development cycles and minimizes manual coding overhead. While Generative AI has shown promise in translating designs to code, current solutions often produce monolithic scripts, failing to natively support modern ecosystems like React, Vue, or Angular. Furthermore, the generated code frequently suffers from poor modularity, making it difficult to maintain. To bridge this gap, we introduce Modular Layout Synthesis (MLS), a hierarchical framework that merges visual understanding with structural normalization. Initially, a visual-semantic encoder maps the screen capture into a serialized tree topology, capturing the essential layout hierarchy. Instead of simple parsing, we apply heuristic deduplication and pattern recognition to isolate reusable blocks, creating a framework-agnostic schema. Finally, a constraint-based generation protocol guides the LLM to synthesize production-ready code with strict typing and component props. Evaluations show that MLS significantly outperforms existing baselines, ensuring superior code reusability and structural integrity across multiple frameworks
Abstract:While leveraging abundant human videos and simulated robot data poses a scalable solution to the scarcity of real-world robot data, the generalization capability of existing vision-language-action models (VLAs) remains limited by mismatches in camera views, visual appearance, and embodiment morphologies. To overcome this limitation, we propose MiVLA, a generalizable VLA empowered by human-robot mutual imitation pre-training, which leverages inherent behavioral similarity between human hands and robotic arms to build a foundation of strong behavioral priors for both human actions and robotic control. Specifically, our method utilizes kinematic rules with left/right hand coordinate systems for bidirectional alignment between human and robot action spaces. Given human or simulated robot demonstrations, MiVLA is trained to forecast behavior trajectories for one embodiment, and imitate behaviors for another one unseen in the demonstration. Based on this mutual imitation, it integrates the behavioral fidelity of real-world human data with the manipulative diversity of simulated robot data into a unified model, thereby enhancing the generalization capability for downstream tasks. Extensive experiments conducted on both simulation and real-world platforms with three robots (ARX, PiPer and LocoMan), demonstrate that MiVLA achieves strong improved generalization capability, outperforming state-of-the-art VLAs (e.g., $\boldsymbolπ_{0}$, $\boldsymbolπ_{0.5}$ and H-RDT) by 25% in simulation, and 14% in real-world robot control tasks.
Abstract:Bayesian optimization (BO) is a widely used iterative algorithm for optimizing black-box functions. Each iteration requires maximizing an acquisition function, such as the upper confidence bound (UCB) or a sample path from the Gaussian process (GP) posterior, as in Thompson sampling (TS). However, finding an exact solution to these maximization problems is often intractable and computationally expensive. Reflecting such realistic situations, in this paper, we delve into the effect of inexact maximizers of the acquisition functions. Defining a measure of inaccuracy in acquisition solutions, we establish cumulative regret bounds for both GP-UCB and GP-TS without requiring exact solutions of acquisition function maximization. Our results show that under appropriate conditions on accumulated inaccuracy, inexact BO algorithms can still achieve sublinear cumulative regret. Motivated by such findings, we provide both theoretical justification and numerical validation for random grid search as an effective and computationally efficient acquisition function solver.
Abstract:Recently, significant progress has been made in protein-ligand docking, especially in modern deep learning methods, and some benchmarks were proposed, e.g., PoseBench, Plinder. However, these benchmarks suffer from less practical evaluation setups (e.g., blind docking, self docking), or heavy framework that involves training, raising challenges to assess docking methods efficiently. To fill this gap, we proposed PoseX, an open-source benchmark focusing on self-docking and cross-docking, to evaluate the algorithmic advances practically and comprehensively. Specifically, first, we curate a new evaluation dataset with 718 entries for self docking and 1,312 for cross docking; second, we incorporate 22 docking methods across three methodological categories, including (1) traditional physics-based methods (e.g., Schr\"odinger Glide), (2) AI docking methods (e.g., DiffDock), (3) AI co-folding methods (e.g., AlphaFold3); third, we design a relaxation method as post-processing to minimize conformation energy and refine binding pose; fourth, we released a leaderboard to rank submitted models in real time. We draw some key insights via extensive experiments: (1) AI-based approaches have already surpassed traditional physics-based approaches in overall docking accuracy (RMSD). The longstanding generalization issues that have plagued AI molecular docking have been significantly alleviated in the latest models. (2) The stereochemical deficiencies of AI-based approaches can be greatly alleviated with post-processing relaxation. Combining AI docking methods with the enhanced relaxation method achieves the best performance to date. (3) AI co-folding methods commonly face ligand chirality issues, which cannot be resolved by relaxation. The code, curated dataset and leaderboard are released at https://github.com/CataAI/PoseX.
Abstract:We study non-linear bandit optimization where the learner maximizes a black-box function with zeroth order function oracle, which has been successfully applied in many critical applications such as drug discovery and hyperparameter tuning. Existing works have showed that with the aid of quantum computing, it is possible to break the $\Omega(\sqrt{T})$ regret lower bound in classical settings and achieve the new $O(\mathrm{poly}\log T)$ upper bound. However, they usually assume that the objective function sits within the reproducing kernel Hilbert space and their algorithms suffer from the curse of dimensionality. In this paper, we propose the new Q-NLB-UCB algorithm which uses the novel parametric function approximation technique and enjoys performance improvement due to quantum fast-forward and quantum Monte Carlo mean estimation. We prove that the regret bound of Q-NLB-UCB is not only $O(\mathrm{poly}\log T)$ but also input dimension-free, making it applicable for high-dimensional tasks. At the heart of our analyses are a new quantum regression oracle and a careful construction of parameter uncertainty region. Our algorithm is also validated for its efficiency on both synthetic and real-world tasks.




Abstract:The point clouds collected by the Airborne Laser Scanning (ALS) system provide accurate 3D information of urban land covers. By utilizing multi-temporal ALS point clouds, semantic changes in urban area can be captured, demonstrating significant potential in urban planning, emergency management, and infrastructure maintenance. Existing 3D change detection methods struggle to efficiently extract multi-class semantic information and change features, still facing the following challenges: (1) the difficulty of accurately modeling cross-temporal point clouds spatial relationships for effective change feature extraction; (2) class imbalance of change samples which hinders distinguishability of semantic features; (3) the lack of real-world datasets for 3D semantic change detection. To resolve these challenges, we propose the Multi-task Enhanced Cross-temporal Point Transformer (ME-CPT) network. ME-CPT establishes spatiotemporal correspondences between point cloud across different epochs and employs attention mechanisms to jointly extract semantic change features, facilitating information exchange and change comparison. Additionally, we incorporate a semantic segmentation task and through the multi-task training strategy, further enhance the distinguishability of semantic features, reducing the impact of class imbalance in change types. Moreover, we release a 22.5 $km^2$ 3D semantic change detection dataset, offering diverse scenes for comprehensive evaluation. Experiments on multiple datasets show that the proposed MT-CPT achieves superior performance compared to existing state-of-the-art methods. The source code and dataset will be released upon acceptance at \url{https://github.com/zhangluqi0209/ME-CPT}.