Abstract:We study non-linear bandit optimization where the learner maximizes a black-box function with zeroth order function oracle, which has been successfully applied in many critical applications such as drug discovery and hyperparameter tuning. Existing works have showed that with the aid of quantum computing, it is possible to break the $\Omega(\sqrt{T})$ regret lower bound in classical settings and achieve the new $O(\mathrm{poly}\log T)$ upper bound. However, they usually assume that the objective function sits within the reproducing kernel Hilbert space and their algorithms suffer from the curse of dimensionality. In this paper, we propose the new Q-NLB-UCB algorithm which uses the novel parametric function approximation technique and enjoys performance improvement due to quantum fast-forward and quantum Monte Carlo mean estimation. We prove that the regret bound of Q-NLB-UCB is not only $O(\mathrm{poly}\log T)$ but also input dimension-free, making it applicable for high-dimensional tasks. At the heart of our analyses are a new quantum regression oracle and a careful construction of parameter uncertainty region. Our algorithm is also validated for its efficiency on both synthetic and real-world tasks.