Abstract:Recent diffusion-based unrestricted attacks generate imperceptible adversarial examples with high transferability compared to previous unrestricted attacks and restricted attacks. However, existing works on diffusion-based unrestricted attacks are mostly focused on images yet are seldom explored in videos. In this paper, we propose the Recursive Token Merging for Video Diffusion-based Unrestricted Adversarial Attack (ReToMe-VA), which is the first framework to generate imperceptible adversarial video clips with higher transferability. Specifically, to achieve spatial imperceptibility, ReToMe-VA adopts a Timestep-wise Adversarial Latent Optimization (TALO) strategy that optimizes perturbations in diffusion models' latent space at each denoising step. TALO offers iterative and accurate updates to generate more powerful adversarial frames. TALO can further reduce memory consumption in gradient computation. Moreover, to achieve temporal imperceptibility, ReToMe-VA introduces a Recursive Token Merging (ReToMe) mechanism by matching and merging tokens across video frames in the self-attention module, resulting in temporally consistent adversarial videos. ReToMe concurrently facilitates inter-frame interactions into the attack process, inducing more diverse and robust gradients, thus leading to better adversarial transferability. Extensive experiments demonstrate the efficacy of ReToMe-VA, particularly in surpassing state-of-the-art attacks in adversarial transferability by more than 14.16% on average.
Abstract:The quality of video-text pairs fundamentally determines the upper bound of text-to-video models. Currently, the datasets used for training these models suffer from significant shortcomings, including low temporal consistency, poor-quality captions, substandard video quality, and imbalanced data distribution. The prevailing video curation process, which depends on image models for tagging and manual rule-based curation, leads to a high computational load and leaves behind unclean data. As a result, there is a lack of appropriate training datasets for text-to-video models. To address this problem, we present VidGen-1M, a superior training dataset for text-to-video models. Produced through a coarse-to-fine curation strategy, this dataset guarantees high-quality videos and detailed captions with excellent temporal consistency. When used to train the video generation model, this dataset has led to experimental results that surpass those obtained with other models.
Abstract:The recent advancements in text-to-image generative models have been remarkable. Yet, the field suffers from a lack of evaluation metrics that accurately reflect the performance of these models, particularly lacking fine-grained metrics that can guide the optimization of the models. In this paper, we propose EvalAlign, a metric characterized by its accuracy, stability, and fine granularity. Our approach leverages the capabilities of Multimodal Large Language Models (MLLMs) pre-trained on extensive datasets. We develop evaluation protocols that focus on two key dimensions: image faithfulness and text-image alignment. Each protocol comprises a set of detailed, fine-grained instructions linked to specific scoring options, enabling precise manual scoring of the generated images. We Supervised Fine-Tune (SFT) the MLLM to align closely with human evaluative judgments, resulting in a robust evaluation model. Our comprehensive tests across 24 text-to-image generation models demonstrate that EvalAlign not only provides superior metric stability but also aligns more closely with human preferences than existing metrics, confirming its effectiveness and utility in model assessment.
Abstract:The recent advancements in text-to-image generative models have been remarkable. Yet, the field suffers from a lack of evaluation metrics that accurately reflect the performance of these models, particularly lacking fine-grained metrics that can guide the optimization of the models. In this paper, we propose EvalAlign, a metric characterized by its accuracy, stability, and fine granularity. Our approach leverages the capabilities of Multimodal Large Language Models (MLLMs) pre-trained on extensive datasets. We develop evaluation protocols that focus on two key dimensions: image faithfulness and text-image alignment. Each protocol comprises a set of detailed, fine-grained instructions linked to specific scoring options, enabling precise manual scoring of the generated images. We Supervised Fine-Tune (SFT) the MLLM to align closely with human evaluative judgments, resulting in a robust evaluation model. Our comprehensive tests across 24 text-to-image generation models demonstrate that EvalAlign not only provides superior metric stability but also aligns more closely with human preferences than existing metrics, confirming its effectiveness and utility in model assessment.
Abstract:Vanilla text-to-image diffusion models struggle with generating accurate human images, commonly resulting in imperfect anatomies such as unnatural postures or disproportionate limbs.Existing methods address this issue mostly by fine-tuning the model with extra images or adding additional controls -- human-centric priors such as pose or depth maps -- during the image generation phase. This paper explores the integration of these human-centric priors directly into the model fine-tuning stage, essentially eliminating the need for extra conditions at the inference stage. We realize this idea by proposing a human-centric alignment loss to strengthen human-related information from the textual prompts within the cross-attention maps. To ensure semantic detail richness and human structural accuracy during fine-tuning, we introduce scale-aware and step-wise constraints within the diffusion process, according to an in-depth analysis of the cross-attention layer. Extensive experiments show that our method largely improves over state-of-the-art text-to-image models to synthesize high-quality human images based on user-written prompts. Project page: \url{https://hcplayercvpr2024.github.io}.
Abstract:Semantic occupancy prediction aims to infer dense geometry and semantics of surroundings for an autonomous agent to operate safely in the 3D environment. Existing occupancy prediction methods are almost entirely trained on human-annotated volumetric data. Although of high quality, the generation of such 3D annotations is laborious and costly, restricting them to a few specific object categories in the training dataset. To address this limitation, this paper proposes Open Vocabulary Occupancy (OVO), a novel approach that allows semantic occupancy prediction of arbitrary classes but without the need for 3D annotations during training. Keys to our approach are (1) knowledge distillation from a pre-trained 2D open-vocabulary segmentation model to the 3D occupancy network, and (2) pixel-voxel filtering for high-quality training data generation. The resulting framework is simple, compact, and compatible with most state-of-the-art semantic occupancy prediction models. On NYUv2 and SemanticKITTI datasets, OVO achieves competitive performance compared to supervised semantic occupancy prediction approaches. Furthermore, we conduct extensive analyses and ablation studies to offer insights into the design of the proposed framework.
Abstract:One critical component in lossy deep image compression is the entropy model, which predicts the probability distribution of the quantized latent representation in the encoding and decoding modules. Previous works build entropy models upon convolutional neural networks which are inefficient in capturing global dependencies. In this work, we propose a novel transformer-based entropy model, termed Entroformer, to capture long-range dependencies in probability distribution estimation effectively and efficiently. Different from vision transformers in image classification, the Entroformer is highly optimized for image compression, including a top-k self-attention and a diamond relative position encoding. Meanwhile, we further expand this architecture with a parallel bidirectional context model to speed up the decoding process. The experiments show that the Entroformer achieves state-of-the-art performance on image compression while being time-efficient.
Abstract:In conventional object detection frameworks, a backbone body inherited from image recognition models extracts deep latent features and then a neck module fuses these latent features to capture information at different scales. As the resolution in object detection is much larger than in image recognition, the computational cost of the backbone often dominates the total inference cost. This heavy-backbone design paradigm is mostly due to the historical legacy when transferring image recognition models to object detection rather than an end-to-end optimized design for object detection. In this work, we show that such paradigm indeed leads to sub-optimal object detection models. To this end, we propose a novel heavy-neck paradigm, GiraffeDet, a giraffe-like network for efficient object detection. The GiraffeDet uses an extremely lightweight backbone and a very deep and large neck module which encourages dense information exchange among different spatial scales as well as different levels of latent semantics simultaneously. This design paradigm allows detectors to process the high-level semantic information and low-level spatial information at the same priority even in the early stage of the network, making it more effective in detection tasks. Numerical evaluations on multiple popular object detection benchmarks show that GiraffeDet consistently outperforms previous SOTA models across a wide spectrum of resource constraints.
Abstract:In object detection models, the detection backbone consumes more than half of the overall inference cost. Recent researches attempt to reduce this cost by optimizing the backbone architecture with the help of Neural Architecture Search (NAS). However, existing NAS methods for object detection require hundreds to thousands of GPU hours of searching, making them impractical in fast-paced research and development. In this work, we propose a novel zero-shot NAS method to address this issue. The proposed method, named ZenDet, automatically designs efficient detection backbones without training network parameters, reducing the architecture design cost to nearly zero yet delivering the state-of-the-art (SOTA) performance. Under the hood, ZenDet maximizes the differential entropy of detection backbones, leading to a better feature extractor for object detection under the same computational budgets. After merely one GPU day of fully automatic design, ZenDet innovates SOTA detection backbones on multiple detection benchmark datasets with little human intervention. Comparing to ResNet-50 backbone, ZenDet is +2.0% better in mAP when using the same amount of FLOPs/parameters and is 1.54 times faster on NVIDIA V100 at the same mAP. Code and pre-trained models will be released later.
Abstract:Compression standards have been used to reduce the cost of image storage and transmission for decades. In recent years, learned image compression methods have been proposed and achieved compelling performance to the traditional standards. However, in these methods, a set of different networks are used for various compression rates, resulting in a high cost in model storage and training. Although some variable-rate approaches have been proposed to reduce the cost by using a single network, most of them brought some performance degradation when applying fine rate control. To enable variable-rate control without sacrificing the performance, we propose an efficient Interpolation Variable-Rate (IVR) network, by introducing a handy Interpolation Channel Attention (InterpCA) module in the compression network. With the use of two hyperparameters for rate control and linear interpolation, the InterpCA achieves a fine PSNR interval of 0.001 dB and a fine rate interval of 0.0001 Bits-Per-Pixel (BPP) with 9000 rates in the IVR network. Experimental results demonstrate that the IVR network is the first variable-rate learned method that outperforms VTM 9.0 (intra) in PSNR and Multiscale Structural Similarity (MS-SSIM).