Abstract:Vanilla text-to-image diffusion models struggle with generating accurate human images, commonly resulting in imperfect anatomies such as unnatural postures or disproportionate limbs.Existing methods address this issue mostly by fine-tuning the model with extra images or adding additional controls -- human-centric priors such as pose or depth maps -- during the image generation phase. This paper explores the integration of these human-centric priors directly into the model fine-tuning stage, essentially eliminating the need for extra conditions at the inference stage. We realize this idea by proposing a human-centric alignment loss to strengthen human-related information from the textual prompts within the cross-attention maps. To ensure semantic detail richness and human structural accuracy during fine-tuning, we introduce scale-aware and step-wise constraints within the diffusion process, according to an in-depth analysis of the cross-attention layer. Extensive experiments show that our method largely improves over state-of-the-art text-to-image models to synthesize high-quality human images based on user-written prompts. Project page: \url{https://hcplayercvpr2024.github.io}.
Abstract:Quantum state tomography (QST) is the process of reconstructing the complete state of a quantum system (mathematically described as a density matrix) through a series of different measurements. These measurements are performed on a number of identical copies of the quantum system, with outcomes gathered as frequencies. QST aims to recover the density matrix and the corresponding properties of the quantum state from the measured frequencies. Although an informationally complete set of measurements can specify quantum state accurately in an ideal scenario with a large number of identical copies, both measurements and identical copies are restricted and imperfect in practical scenarios, making QST highly ill-posed. The conventional QST methods usually assume adequate or accurate measured frequencies or rely on manually designed regularizers to handle the ill-posed reconstruction problem, suffering from limited applications in realistic scenarios. Recent advances in deep neural networks (DNNs) led to the emergence of deep learning (DL) in QST. However, existing DL-based QST approaches often employ generic DNN models that are not optimized for imperfect conditions of QST. In this paper, we propose a transformer-based autoencoder architecture tailored for QST with imperfect measurement data. Our method leverages a transformer-based encoder to extract an informative latent representation (ILR) from imperfect measurement data and employs a decoder to predict the quantum states based on the ILR. We anticipate that the high-dimensional ILR will capture more comprehensive information about quantum states. To achieve this, we conduct pre-training of the encoder using a pretext task that involves reconstructing high-quality frequencies from measured frequencies. Extensive simulations and experiments demonstrate the remarkable ability of the ILR in dealing with imperfect measurement data in QST.
Abstract:Neural networks have been actively explored for quantum state tomography (QST) due to their favorable expressibility. To further enhance the efficiency of reconstructing quantum states, we explore the similarity between language modeling and quantum state tomography and propose an attention-based QST method that utilizes the Transformer network to capture the correlations between measured results from different measurements. Our method directly retrieves the density matrices of quantum states from measured statistics, with the assistance of an integrated loss function that helps minimize the difference between the actual states and the retrieved states. Then, we systematically trace different impacts within a bag of common training strategies involving various parameter adjustments on the attention-based QST method. Combining these techniques, we establish a robust baseline that can efficiently reconstruct pure and mixed quantum states. Furthermore, by comparing the performance of three popular neural network architectures (FCNs, CNNs, and Transformer), we demonstrate the remarkable expressiveness of attention in learning density matrices from measured statistics.
Abstract:3D convolution neural networks (CNNs) have been the prevailing option for video recognition. To capture the temporal information, 3D convolutions are computed along the sequences, leading to cubically growing and expensive computations. To reduce the computational cost, previous methods resort to manually designed 3D/2D CNN structures with approximations or automatic search, which sacrifice the modeling ability or make training time-consuming. In this work, we propose to automatically design efficient 3D CNN architectures via a novel training-free neural architecture search approach tailored for 3D CNNs considering the model complexity. To measure the expressiveness of 3D CNNs efficiently, we formulate a 3D CNN as an information system and derive an analytic entropy score, based on the Maximum Entropy Principle. Specifically, we propose a spatio-temporal entropy score (STEntr-Score) with a refinement factor to handle the discrepancy of visual information in spatial and temporal dimensions, through dynamically leveraging the correlation between the feature map size and kernel size depth-wisely. Highly efficient and expressive 3D CNN architectures, \ie entropy-based 3D CNNs (E3D family), can then be efficiently searched by maximizing the STEntr-Score under a given computational budget, via an evolutionary algorithm without training the network parameters. Extensive experiments on Something-Something V1\&V2 and Kinetics400 demonstrate that the E3D family achieves state-of-the-art performance with higher computational efficiency. Code is available at https://github.com/alibaba/lightweight-neural-architecture-search.
Abstract:In object detection models, the detection backbone consumes more than half of the overall inference cost. Recent researches attempt to reduce this cost by optimizing the backbone architecture with the help of Neural Architecture Search (NAS). However, existing NAS methods for object detection require hundreds to thousands of GPU hours of searching, making them impractical in fast-paced research and development. In this work, we propose a novel zero-shot NAS method to address this issue. The proposed method, named ZenDet, automatically designs efficient detection backbones without training network parameters, reducing the architecture design cost to nearly zero yet delivering the state-of-the-art (SOTA) performance. Under the hood, ZenDet maximizes the differential entropy of detection backbones, leading to a better feature extractor for object detection under the same computational budgets. After merely one GPU day of fully automatic design, ZenDet innovates SOTA detection backbones on multiple detection benchmark datasets with little human intervention. Comparing to ResNet-50 backbone, ZenDet is +2.0% better in mAP when using the same amount of FLOPs/parameters and is 1.54 times faster on NVIDIA V100 at the same mAP. Code and pre-trained models will be released later.
Abstract:Compression standards have been used to reduce the cost of image storage and transmission for decades. In recent years, learned image compression methods have been proposed and achieved compelling performance to the traditional standards. However, in these methods, a set of different networks are used for various compression rates, resulting in a high cost in model storage and training. Although some variable-rate approaches have been proposed to reduce the cost by using a single network, most of them brought some performance degradation when applying fine rate control. To enable variable-rate control without sacrificing the performance, we propose an efficient Interpolation Variable-Rate (IVR) network, by introducing a handy Interpolation Channel Attention (InterpCA) module in the compression network. With the use of two hyperparameters for rate control and linear interpolation, the InterpCA achieves a fine PSNR interval of 0.001 dB and a fine rate interval of 0.0001 Bits-Per-Pixel (BPP) with 9000 rates in the IVR network. Experimental results demonstrate that the IVR network is the first variable-rate learned method that outperforms VTM 9.0 (intra) in PSNR and Multiscale Structural Similarity (MS-SSIM).
Abstract:The framework of dominant learned video compression methods is usually composed of motion prediction modules as well as motion vector and residual image compression modules, suffering from its complex structure and error propagation problem. Approaches have been proposed to reduce the complexity by replacing motion prediction modules with implicit flow networks. Error propagation aware training strategy is also proposed to alleviate incremental reconstruction errors from previously decoded frames. Although these methods have brought some improvement, little attention has been paid to the framework itself. Inspired by the success of learned image compression through simplifying the framework with a single deep neural network, it is natural to expect a better performance in video compression via a simple yet appropriate framework. Therefore, we propose a framework to directly compress raw-pixel frames (rather than residual images), where no extra motion prediction module is required. Instead, an entropy model is used to estimate the spatiotemporal redundancy in a latent space rather than pixel level, which significantly reduces the complexity of the framework. Specifically, the whole framework is a compression module, consisting of a unified auto-encoder which produces identically distributed latents for all frames, and a spatiotemporal entropy estimation model to minimize the entropy of these latents. Experiments showed that the proposed method outperforms state-of-the-art (SOTA) performance under the metric of multiscale structural similarity (MS-SSIM) and achieves competitive results under the metric of PSNR.
Abstract:A key component in Neural Architecture Search (NAS) is an accuracy predictor which asserts the accuracy of a queried architecture. To build a high quality accuracy predictor, conventional NAS algorithms rely on training a mass of architectures or a big supernet. This step often consumes hundreds to thousands of GPU days, dominating the total search cost. To address this issue, we propose to replace the accuracy predictor with a novel model-complexity index named Zen-score. Instead of predicting model accuracy, Zen-score directly asserts the model complexity of a network without training its parameters. This is inspired by recent advances in deep learning theories which show that model complexity of a network positively correlates to its accuracy on the target dataset. The computation of Zen-score only takes a few forward inferences through a randomly initialized network using random Gaussian input. It is applicable to any Vanilla Convolutional Neural Networks (VCN-networks) or compatible variants, covering a majority of networks popular in real-world applications. When combining Zen-score with Evolutionary Algorithm, we obtain a novel Zero-Shot NAS algorithm named Zen-NAS. We conduct extensive experiments on CIFAR10/CIFAR100 and ImageNet. In summary, Zen-NAS is able to design high performance architectures in less than half GPU day (12 GPU hours). The resultant networks, named ZenNets, achieve up to $83.0\%$ top-1 accuracy on ImageNet. Comparing to EfficientNets-B3/B5 of the same or better accuracies, ZenNets are up to $5.6$ times faster on NVIDIA V100, $11$ times faster on NVIDIA T4, $2.6$ times faster on Google Pixel2 and uses $50\%$ less FLOPs. Our source code and pre-trained models are released on https://github.com/idstcv/ZenNAS.
Abstract:In recent deep image compression neural networks, the entropy model plays a critical role in estimating the prior distribution of deep image encodings. Existing methods combine hyperprior with local context in the entropy estimation function. This greatly limits their performance due to the absence of a global vision. In this work, we propose a novel Global Reference Model for image compression to effectively leverage both the local and the global context information, leading to an enhanced compression rate. The proposed method scans decoded latents and then finds the most relevant latent to assist the distribution estimating of the current latent. A by-product of this work is the innovation of a mean-shifting GDN module that further improves the performance. Experimental results demonstrate that the proposed model outperforms the rate-distortion performance of most of the state-of-the-art methods in the industry.