Abstract:Scene generation is crucial to many computer graphics applications. Recent advances in generative AI have streamlined sketch-to-image workflows, easing the workload for artists and designers in creating scene concept art. However, these methods often struggle for complex scenes with multiple detailed objects, sometimes missing small or uncommon instances. In this paper, we propose a Training-free Triplet Tuning for Sketch-to-Scene (T3-S2S) generation after reviewing the entire cross-attention mechanism. This scheme revitalizes the existing ControlNet model, enabling effective handling of multi-instance generations, involving prompt balance, characteristics prominence, and dense tuning. Specifically, this approach enhances keyword representation via the prompt balance module, reducing the risk of missing critical instances. It also includes a characteristics prominence module that highlights TopK indices in each channel, ensuring essential features are better represented based on token sketches. Additionally, it employs dense tuning to refine contour details in the attention map, compensating for instance-related regions. Experiments validate that our triplet tuning approach substantially improves the performance of existing sketch-to-image models. It consistently generates detailed, multi-instance 2D images, closely adhering to the input prompts and enhancing visual quality in complex multi-instance scenes. Code is available at https://github.com/chaos-sun/t3s2s.git.
Abstract:3D Content Generation is at the heart of many computer graphics applications, including video gaming, film-making, virtual and augmented reality, etc. This paper proposes a novel deep-learning based approach for automatically generating interactive and playable 3D game scenes, all from the user's casual prompts such as a hand-drawn sketch. Sketch-based input offers a natural, and convenient way to convey the user's design intention in the content creation process. To circumvent the data-deficient challenge in learning (i.e. the lack of large training data of 3D scenes), our method leverages a pre-trained 2D denoising diffusion model to generate a 2D image of the scene as the conceptual guidance. In this process, we adopt the isometric projection mode to factor out unknown camera poses while obtaining the scene layout. From the generated isometric image, we use a pre-trained image understanding method to segment the image into meaningful parts, such as off-ground objects, trees, and buildings, and extract the 2D scene layout. These segments and layouts are subsequently fed into a procedural content generation (PCG) engine, such as a 3D video game engine like Unity or Unreal, to create the 3D scene. The resulting 3D scene can be seamlessly integrated into a game development environment and is readily playable. Extensive tests demonstrate that our method can efficiently generate high-quality and interactive 3D game scenes with layouts that closely follow the user's intention.
Abstract:Given a single image of a 3D object, this paper proposes a novel method (named ConsistNet) that is able to generate multiple images of the same object, as if seen they are captured from different viewpoints, while the 3D (multi-view) consistencies among those multiple generated images are effectively exploited. Central to our method is a multi-view consistency block which enables information exchange across multiple single-view diffusion processes based on the underlying multi-view geometry principles. ConsistNet is an extension to the standard latent diffusion model, and consists of two sub-modules: (a) a view aggregation module that unprojects multi-view features into global 3D volumes and infer consistency, and (b) a ray aggregation module that samples and aggregate 3D consistent features back to each view to enforce consistency. Our approach departs from previous methods in multi-view image generation, in that it can be easily dropped-in pre-trained LDMs without requiring explicit pixel correspondences or depth prediction. Experiments show that our method effectively learns 3D consistency over a frozen Zero123 backbone and can generate 16 surrounding views of the object within 40 seconds on a single A100 GPU. Our code will be made available on https://github.com/JiayuYANG/ConsistNet