Virginia Tech
Abstract:Traditional data influence estimation methods, like influence function, assume that learning algorithms are permutation-invariant with respect to training data. However, modern training paradigms, especially for foundation models using stochastic algorithms and multi-stage curricula, are sensitive to data ordering, thus violating this assumption. This mismatch renders influence functions inadequate for answering a critical question in machine learning: How can we capture the dependence of data influence on the optimization trajectory during training? To address this gap, we formalize the concept of trajectory-specific leave-one-out (LOO) influence, which quantifies the impact of removing a data point from a specific iteration during training, accounting for the exact sequence of data encountered and the model's optimization trajectory. However, exactly evaluating the trajectory-specific LOO presents a significant computational challenge. To address this, we propose data value embedding, a novel technique enabling efficient approximation of trajectory-specific LOO. Specifically, we compute a training data embedding that encapsulates the cumulative interactions between data and the evolving model parameters. The LOO can then be efficiently approximated through a simple dot-product between the data value embedding and the gradient of the given test data. As data value embedding captures training data ordering, it offers valuable insights into model training dynamics. In particular, we uncover distinct phases of data influence, revealing that data points in the early and late stages of training exert a greater impact on the final model. These insights translate into actionable strategies for managing the computational overhead of data selection by strategically timing the selection process, potentially opening new avenues in data curation research.
Abstract:Large-scale generative models have shown impressive image-generation capabilities, propelled by massive data. However, this often inadvertently leads to the generation of harmful or inappropriate content and raises copyright concerns. Driven by these concerns, machine unlearning has become crucial to effectively purge undesirable knowledge from models. While existing literature has studied various unlearning techniques, these often suffer from either poor unlearning quality or degradation in text-image alignment after unlearning, due to the competitive nature of these objectives. To address these challenges, we propose a framework that seeks an optimal model update at each unlearning iteration, ensuring monotonic improvement on both objectives. We further derive the characterization of such an update. In addition, we design procedures to strategically diversify the unlearning and remaining datasets to boost performance improvement. Our evaluation demonstrates that our method effectively removes target classes from recent diffusion-based generative models and concepts from stable diffusion models while maintaining close alignment with the models' original trained states, thus outperforming state-of-the-art baselines. Our code will be made available at \url{https://github.com/reds-lab/Restricted_gradient_diversity_unlearning.git}.
Abstract:We present a novel instruction tuning recipe to improve the zero-shot task generalization of multimodal large language models. In contrast to existing instruction tuning mechanisms that heavily rely on visual instructions, our approach focuses on language-based instruction tuning, offering a distinct and more training efficient path for multimodal instruction tuning. We evaluate the performance of the proposed approach on 9 unseen datasets across both language and vision modalities. Our results show that our language-only instruction tuning is able to significantly improve the performance of two pretrained multimodal models based on Llama 2 and Vicuna on those unseen datasets. Interestingly, the language instruction following ability also helps unlock the models to follow vision instructions without explicit training. Compared to the state of the art multimodal instruction tuning approaches that are mainly based on visual instructions, our language-based method not only achieves superior performance but also significantly enhances training efficiency. For instance, the language-only instruction tuning produces competitive average performance across the evaluated datasets (with even better performance on language datasets) with significant training efficiency improvements (on average 4x), thanks to the striking reduction in the need for vision data. With a small number of visual instructions, this emerging language instruction following ability transfers well to the unseen vision datasets, outperforming the state of the art with greater training efficiency.
Abstract:Data is the new oil of the 21st century. The growing trend of trading data for greater welfare has led to the emergence of data markets. A data market is any mechanism whereby the exchange of data products including datasets and data derivatives takes place as a result of data buyers and data sellers being in contact with one another, either directly or through mediating agents. It serves as a coordinating mechanism by which several functions, including the pricing and the distribution of data as the most important ones, interact to make the value of data fully exploited and enhanced. In this article, we present a comprehensive survey of this important and emerging direction from the aspects of data search, data productization, data transaction, data pricing, revenue allocation as well as privacy, security, and trust issues. We also investigate the government policies and industry status of data markets across different countries and different domains. Finally, we identify the unresolved challenges and discuss possible future directions for the development of data markets.
Abstract:As data emerges as a vital driver of technological and economic advancements, a key challenge is accurately quantifying its value in algorithmic decision-making. The Shapley value, a well-established concept from cooperative game theory, has been widely adopted to assess the contribution of individual data sources in supervised machine learning. However, its symmetry axiom assumes all players in the cooperative game are homogeneous, which overlooks the complex structures and dependencies present in real-world datasets. To address this limitation, we extend the traditional data Shapley framework to asymmetric data Shapley, making it flexible enough to incorporate inherent structures within the datasets for structure-aware data valuation. We also introduce an efficient $k$-nearest neighbor-based algorithm for its exact computation. We demonstrate the practical applicability of our framework across various machine learning tasks and data market contexts. The code is available at: https://github.com/xzheng01/Asymmetric-Data-Shapley.
Abstract:Existing work on improving language model reasoning typically explores a single solution path, which can be prone to errors. Inspired by perspective-taking in social studies, this paper introduces DiPT, a novel approach that complements current reasoning methods by explicitly incorporating diversified viewpoints. This approach allows the model to gain a deeper understanding of the problem's context and identify the most effective solution path during the inference stage. Additionally, it provides a general data-centric AI recipe for augmenting existing data to improve their quality for fine-tuning. Our empirical results demonstrate that DiPT can be flexibly integrated into existing methods that focus on a single reasoning approach, enhancing their reasoning performance and stability when presented with paraphrased problems. Furthermore, we illustrate improved context understanding by maintaining the model's safe outputs against "jailbreaking" prompts intentionally designed to bypass safeguards built into deployed models. Lastly, we show that fine-tuning with data enriched with diverse perspectives can boost the reasoning capabilities of the model compared to fine-tuning with raw data alone.
Abstract:To ensure performance on a diverse set of downstream tasks, LLMs are pretrained via data mixtures over different domains. In this work, we demonstrate that the optimal data composition for a fixed compute budget varies depending on the scale of the training data, suggesting that the common practice of empirically determining an optimal composition using small-scale experiments will not yield the optimal data mixtures when scaling up to the final model. To address this challenge, we propose *AutoScale*, an automated tool that finds a compute-optimal data composition for training at any desired target scale. AutoScale first determines the optimal composition at a small scale using a novel bilevel optimization framework, Direct Data Optimization (*DDO*), and then fits a predictor to estimate the optimal composition at larger scales. The predictor's design is inspired by our theoretical analysis of scaling laws related to data composition, which could be of independent interest. In empirical studies with pre-training 774M Decoder-only LMs (GPT-2 Large) on RedPajama dataset, AutoScale decreases validation perplexity at least 25% faster than any baseline with up to 38% speed up compared to without reweighting, achieving the best overall performance across downstream tasks. On pre-training Encoder-only LMs (BERT) with masked language modeling, DDO is shown to decrease loss on all domains while visibly improving average task performance on GLUE benchmark by 8.7% and on large-scale QA dataset (SQuAD) by 5.9% compared with without reweighting. AutoScale speeds up training by up to 28%. Our codes are open-sourced.
Abstract:As data plays an increasingly pivotal role in decision-making, the emergence of data markets underscores the growing importance of data valuation. Within the machine learning landscape, Data Shapley stands out as a widely embraced method for data valuation. However, a limitation of Data Shapley is its assumption of a fixed dataset, contrasting with the dynamic nature of real-world applications where data constantly evolves and expands. This paper establishes the relationship between Data Shapley and infinite-order U-statistics and addresses this limitation by quantifying the uncertainty of Data Shapley with changes in data distribution from the perspective of U-statistics. We make statistical inferences on data valuation to obtain confidence intervals for the estimations. We construct two different algorithms to estimate this uncertainty and provide recommendations for their applicable situations. We also conduct a series of experiments on various datasets to verify asymptotic normality and propose a practical trading scenario enabled by this method.
Abstract:Reinforcement learning from human feedback plays a crucial role in aligning language models towards human preferences, traditionally represented through comparisons between pairs or sets of responses within a given context. While many studies have enhanced algorithmic techniques to optimize learning from such data, this work shifts focus to improving preference learning through a data-centric approach. Specifically, we propose enriching existing preference datasets with machine-generated rationales that explain the reasons behind choices. We develop a simple and principled framework to augment current preference learning methods with rationale information. Our comprehensive analysis highlights how rationales enhance learning efficiency. Extensive experiments reveal that rationale-enriched preference learning offers multiple advantages: it improves data efficiency, accelerates convergence to higher-performing models, and reduces verbosity bias and hallucination. Furthermore, this framework is versatile enough to integrate with various preference optimization algorithms. Overall, our findings highlight the potential of re-imagining data design for preference learning, demonstrating that even freely available machine-generated rationales can significantly boost performance across multiple dimensions. The code repository is available at https: //github.com/reds-lab/preference-learning-with-rationales
Abstract:We present a comprehensive AI risk taxonomy derived from eight government policies from the European Union, United States, and China and 16 company policies worldwide, making a significant step towards establishing a unified language for generative AI safety evaluation. We identify 314 unique risk categories organized into a four-tiered taxonomy. At the highest level, this taxonomy encompasses System & Operational Risks, Content Safety Risks, Societal Risks, and Legal & Rights Risks. The taxonomy establishes connections between various descriptions and approaches to risk, highlighting the overlaps and discrepancies between public and private sector conceptions of risk. By providing this unified framework, we aim to advance AI safety through information sharing across sectors and the promotion of best practices in risk mitigation for generative AI models and systems.