Abstract:Data is a crucial element in large language model (LLM) alignment. Recent studies have explored using LLMs for efficient data collection. However, LLM-generated data often suffers from quality issues, with underrepresented or absent aspects and low-quality datapoints. To address these problems, we propose Data Advisor, an enhanced LLM-based method for generating data that takes into account the characteristics of the desired dataset. Starting from a set of pre-defined principles in hand, Data Advisor monitors the status of the generated data, identifies weaknesses in the current dataset, and advises the next iteration of data generation accordingly. Data Advisor can be easily integrated into existing data generation methods to enhance data quality and coverage. Experiments on safety alignment of three representative LLMs (i.e., Mistral, Llama2, and Falcon) demonstrate the effectiveness of Data Advisor in enhancing model safety against various fine-grained safety issues without sacrificing model utility.
Abstract:We propose a constraint learning schema for fine-tuning Large Language Models (LLMs) with attribute control. Given a training corpus and control criteria formulated as a sequence-level constraint on model outputs, our method fine-tunes the LLM on the training corpus while enhancing constraint satisfaction with minimal impact on its utility and generation quality. Specifically, our approach regularizes the LLM training by penalizing the KL divergence between the desired output distribution, which satisfies the constraints, and the LLM's posterior. This regularization term can be approximated by an auxiliary model trained to decompose the sequence-level constraints into token-level guidance, allowing the term to be measured by a closed-form formulation. To further improve efficiency, we design a parallel scheme for concurrently updating both the LLM and the auxiliary model. We evaluate the empirical performance of our approach by controlling the toxicity when training an LLM. We show that our approach leads to an LLM that produces fewer inappropriate responses while achieving competitive performance on benchmarks and a toxicity detection task.
Abstract:Knowledge graphs (KGs) complement Large Language Models (LLMs) by providing reliable, structured, domain-specific, and up-to-date external knowledge. However, KGs and LLMs are often developed separately and must be integrated after training. We introduce Tree-of-Traversals, a novel zero-shot reasoning algorithm that enables augmentation of black-box LLMs with one or more KGs. The algorithm equips a LLM with actions for interfacing a KG and enables the LLM to perform tree search over possible thoughts and actions to find high confidence reasoning paths. We evaluate on two popular benchmark datasets. Our results show that Tree-of-Traversals significantly improves performance on question answering and KG question answering tasks. Code is available at \url{https://github.com/amazon-science/tree-of-traversals}
Abstract:Large Language Models (LLMs) can produce responses that exhibit social biases and support stereotypes. However, conventional benchmarking is insufficient to thoroughly evaluate LLM bias, as it can not scale to large sets of prompts and provides no guarantees. Therefore, we propose a novel certification framework QuaCer-B (Quantitative Certification of Bias) that provides formal guarantees on obtaining unbiased responses from target LLMs under large sets of prompts. A certificate consists of high-confidence bounds on the probability of obtaining biased responses from the LLM for any set of prompts containing sensitive attributes, sampled from a distribution. We illustrate the bias certification in LLMs for prompts with various prefixes drawn from given distributions. We consider distributions of random token sequences, mixtures of manual jailbreaks, and jailbreaks in the LLM's embedding space to certify its bias. We certify popular LLMs with QuaCer-B and present novel insights into their biases.
Abstract:Automatic Speech Understanding (ASU) aims at human-like speech interpretation, providing nuanced intent, emotion, sentiment, and content understanding from speech and language (text) content conveyed in speech. Typically, training a robust ASU model relies heavily on acquiring large-scale, high-quality speech and associated transcriptions. However, it is often challenging to collect or use speech data for training ASU due to concerns such as privacy. To approach this setting of enabling ASU when speech (audio) modality is missing, we propose TI-ASU, using a pre-trained text-to-speech model to impute the missing speech. We report extensive experiments evaluating TI-ASU on various missing scales, both multi- and single-modality settings, and the use of LLMs. Our findings show that TI-ASU yields substantial benefits to improve ASU in scenarios where even up to 95% of training speech is missing. Moreover, we show that TI-ASU is adaptive to dropout training, improving model robustness in addressing missing speech during inference.
Abstract:Recent advancement in large language models (LLMs) has offered a strong potential for natural language systems to process informal language. A representative form of informal language is slang, used commonly in daily conversations and online social media. To date, slang has not been comprehensively evaluated in LLMs due partly to the absence of a carefully designed and publicly accessible benchmark. Using movie subtitles, we construct a dataset that supports evaluation on a diverse set of tasks pertaining to automatic processing of slang. For both evaluation and finetuning, we show the effectiveness of our dataset on two core applications: 1) slang detection, and 2) identification of regional and historical sources of slang from natural sentences. We also show how our dataset can be used to probe the output distributions of LLMs for interpretive insights. We find that while LLMs such as GPT-4 achieve good performance in a zero-shot setting, smaller BERT-like models finetuned on our dataset achieve comparable performance. Furthermore, we show that our dataset enables finetuning of LLMs such as GPT-3.5 that achieve substantially better performance than strong zero-shot baselines. Our work offers a comprehensive evaluation and a high-quality benchmark on English slang based on the OpenSubtitles corpus, serving both as a publicly accessible resource and a platform for applying tools for informal language processing.
Abstract:Federated Learning (FL) is a popular algorithm to train machine learning models on user data constrained to edge devices (for example, mobile phones) due to privacy concerns. Typically, FL is trained with the assumption that no part of the user data can be egressed from the edge. However, in many production settings, specific data-modalities/meta-data are limited to be on device while others are not. For example, in commercial SLU systems, it is typically desired to prevent transmission of biometric signals (such as audio recordings of the input prompt) to the cloud, but egress of locally (i.e. on the edge device) transcribed text to the cloud may be possible. In this work, we propose a new algorithm called Partial Federated Learning (PartialFL), where a machine learning model is trained using data where a subset of data modalities or their intermediate representations can be made available to the server. We further restrict our model training by preventing the egress of data labels to the cloud for better privacy, and instead use a contrastive learning based model objective. We evaluate our approach on two different multi-modal datasets and show promising results with our proposed approach.
Abstract:A large body of NLP research has documented the ways gender biases manifest and amplify within large language models (LLMs), though this research has predominantly operated within a gender binary-centric context. A growing body of work has identified the harmful limitations of this gender-exclusive framing; many LLMs cannot correctly and consistently refer to persons outside the gender binary, especially if they use neopronouns. While data scarcity has been identified as a possible culprit, the precise mechanisms through which it influences LLM misgendering remain underexplored. Our work addresses this gap by studying data scarcity's role in subword tokenization and, consequently, the formation of LLM word representations. We uncover how the Byte-Pair Encoding (BPE) tokenizer, a backbone for many popular LLMs, contributes to neopronoun misgendering through out-of-vocabulary behavior. We introduce pronoun tokenization parity (PTP), a novel approach to reduce LLM neopronoun misgendering by preserving a token's functional structure. We evaluate PTP's efficacy using pronoun consistency-based metrics and a novel syntax-based metric. Through several controlled experiments, finetuning LLMs with PTP improves neopronoun consistency from 14.5% to 58.4%, highlighting the significant role tokenization plays in LLM pronoun consistency.
Abstract:Statistical significance testing is used in natural language processing (NLP) to determine whether the results of a study or experiment are likely to be due to chance or if they reflect a genuine relationship. A key step in significance testing is the estimation of confidence interval which is a function of sample variance. Sample variance calculation is straightforward when evaluating against ground truth. However, in many cases, a metric model is often used for evaluation. For example, to compare toxicity of two large language models, a toxicity classifier is used for evaluation. Existing works usually do not consider the variance change due to metric model errors, which can lead to wrong conclusions. In this work, we establish the mathematical foundation of significance testing for model-based metrics. With experiments on public benchmark datasets and a production system, we show that considering metric model errors to calculate sample variances for model-based metrics changes the conclusions in certain experiments.
Abstract:With the recent surge of language models in different applications, attention to safety and robustness of these models has gained significant importance. Here we introduce a joint framework in which we simultaneously probe and improve the robustness of a black-box target model via adversarial prompting and belief augmentation using iterative feedback loops. This framework utilizes an automated red teaming approach to probe the target model, along with a belief augmenter to generate instructions for the target model to improve its robustness to those adversarial probes. Importantly, the adversarial model and the belief generator leverage the feedback from past interactions to improve the effectiveness of the adversarial prompts and beliefs, respectively. In our experiments, we demonstrate that such a framework can reduce toxic content generation both in dynamic cases where an adversary directly interacts with a target model and static cases where we use a static benchmark dataset to evaluate our model.