Abstract:Artificial intelligence (AI) plays a crucial role in autonomous driving (AD) research, propelling its development towards intelligence and efficiency. Currently, the development of AD technology follows two main technical paths: modularization and end-to-end. Modularization decompose the driving task into modules such as perception, prediction, planning, and control, and train them separately. Due to the inconsistency of training objectives between modules, the integrated effect suffers from bias. End-to-end attempts to address this issue by utilizing a single model that directly maps from sensor data to control signals. This path has limited learning capabilities in a comprehensive set of features and struggles to handle unpredictable long-tail events and complex urban traffic scenarios. In the face of challenges encountered in both paths, many researchers believe that large language models (LLMs) with powerful reasoning capabilities and extensive knowledge understanding may be the solution, expecting LLMs to provide AD systems with deeper levels of understanding and decision-making capabilities. In light of the challenges faced by both paths, many researchers believe that LLMs, with their powerful reasoning abilities and extensive knowledge, could offer a solution. To understand if LLMs could enhance AD, this paper conducts a thorough analysis of the potential applications of LLMs in AD systems, including exploring their optimization strategies in both modular and end-to-end approaches, with a particular focus on how LLMs can tackle the problems and challenges present in current solutions. Furthermore, we discuss an important question: Can LLM-based artificial general intelligence (AGI) be a key to achieve high-level AD? We further analyze the potential limitations and challenges that LLMs may encounter in promoting the development of AD technology.
Abstract:Graph Neural Networks (GNNs) are gaining popularity across various domains due to their effectiveness in learning graph-structured data. Nevertheless, they have been shown to be susceptible to backdoor poisoning attacks, which pose serious threats to real-world applications. Meanwhile, graph reduction techniques, including coarsening and sparsification, which have long been employed to improve the scalability of large graph computational tasks, have recently emerged as effective methods for accelerating GNN training on large-scale graphs. However, the current development and deployment of graph reduction techniques for large graphs overlook the potential risks of data poisoning attacks against GNNs. It is not yet clear how graph reduction interacts with existing backdoor attacks. This paper conducts a thorough examination of the robustness of graph reduction methods in scalable GNN training in the presence of state-of-the-art backdoor attacks. We performed a comprehensive robustness analysis across six coarsening methods and six sparsification methods for graph reduction, under three GNN backdoor attacks against three GNN architectures. Our findings indicate that the effectiveness of graph reduction methods in mitigating attack success rates varies significantly, with some methods even exacerbating the attacks. Through detailed analyses of triggers and poisoned nodes, we interpret our findings and enhance our understanding of how graph reduction interacts with backdoor attacks. These results highlight the critical need for incorporating robustness considerations in graph reduction for GNN training, ensuring that enhancements in computational efficiency do not compromise the security of GNN systems.
Abstract:Federated learning (FL) aims to train machine learning (ML) models across potentially millions of edge client devices. Yet, training and customizing models for FL clients is notoriously challenging due to the heterogeneity of client data, device capabilities, and the massive scale of clients, making individualized model exploration prohibitively expensive. State-of-the-art FL solutions personalize a globally trained model or concurrently train multiple models, but they often incur suboptimal model accuracy and huge training costs. In this paper, we introduce FedTrans, a multi-model FL training framework that automatically produces and trains high-accuracy, hardware-compatible models for individual clients at scale. FedTrans begins with a basic global model, identifies accuracy bottlenecks in model architectures during training, and then employs model transformation to derive new models for heterogeneous clients on the fly. It judiciously assigns models to individual clients while performing soft aggregation on multi-model updates to minimize total training costs. Our evaluations using realistic settings show that FedTrans improves individual client model accuracy by 14% - 72% while slashing training costs by 1.6X - 20X over state-of-the-art solutions.
Abstract:We investigate the problem of explainability in machine learning.To address this problem, Feature Attribution Methods (FAMs) measure the contribution of each feature through a perturbation test, where the difference in prediction is compared under different perturbations.However, such perturbation tests may not accurately distinguish the contributions of different features, when their change in prediction is the same after perturbation.In order to enhance the ability of FAMs to distinguish different features' contributions in this challenging setting, we propose to utilize the probability (PNS) that perturbing a feature is a necessary and sufficient cause for the prediction to change as a measure of feature importance.Our approach, Feature Attribution with Necessity and Sufficiency (FANS), computes the PNS via a perturbation test involving two stages (factual and interventional).In practice, to generate counterfactual samples, we use a resampling-based approach on the observed samples to approximate the required conditional distribution.Finally, we combine FANS and gradient-based optimization to extract the subset with the largest PNS.We demonstrate that FANS outperforms existing feature attribution methods on six benchmarks.
Abstract:Deep neural networks (DNNs) have been demonstrated to be vulnerable to well-crafted \emph{adversarial examples}, which are generated through either well-conceived $\mathcal{L}_p$-norm restricted or unrestricted attacks. Nevertheless, the majority of those approaches assume that adversaries can modify any features as they wish, and neglect the causal generating process of the data, which is unreasonable and unpractical. For instance, a modification in income would inevitably impact features like the debt-to-income ratio within a banking system. By considering the underappreciated causal generating process, first, we pinpoint the source of the vulnerability of DNNs via the lens of causality, then give theoretical results to answer \emph{where to attack}. Second, considering the consequences of the attack interventions on the current state of the examples to generate more realistic adversarial examples, we propose CADE, a framework that can generate \textbf{C}ounterfactual \textbf{AD}versarial \textbf{E}xamples to answer \emph{how to attack}. The empirical results demonstrate CADE's effectiveness, as evidenced by its competitive performance across diverse attack scenarios, including white-box, transfer-based, and random intervention attacks.
Abstract:Explainability of Graph Neural Networks (GNNs) is critical to various GNN applications but remains an open challenge. A convincing explanation should be both necessary and sufficient simultaneously. However, existing GNN explaining approaches focus on only one of the two aspects, necessity or sufficiency, or a trade-off between the two. To search for the most necessary and sufficient explanation, the Probability of Necessity and Sufficiency (PNS) can be applied since it can mathematically quantify the necessity and sufficiency of an explanation. Nevertheless, the difficulty of obtaining PNS due to non-monotonicity and the challenge of counterfactual estimation limits its wide use. To address the non-identifiability of PNS, we resort to a lower bound of PNS that can be optimized via counterfactual estimation, and propose Necessary and Sufficient Explanation for GNN (NSEG) via optimizing that lower bound. Specifically, we employ nearest neighbor matching to generate counterfactual samples for the features, which is different from the random perturbation. In particular, NSEG combines the edges and node features to generate an explanation, where the common edge explanation is a special case of the combined explanation. Empirical study shows that NSEG achieves excellent performance in generating the most necessary and sufficient explanations among a series of state-of-the-art methods.
Abstract:In the past two decades, most research on anomaly detection has focused on improving the accuracy of the detection, while largely ignoring the explainability of the corresponding methods and thus leaving the explanation of outcomes to practitioners. As anomaly detection algorithms are increasingly used in safety-critical domains, providing explanations for the high-stakes decisions made in those domains has become an ethical and regulatory requirement. Therefore, this work provides a comprehensive and structured survey on state-of-the-art explainable anomaly detection techniques. We propose a taxonomy based on the main aspects that characterize each explainable anomaly detection technique, aiming to help practitioners and researchers find the explainable anomaly detection method that best suits their needs.