Abstract:Artificial intelligence (AI) plays a crucial role in autonomous driving (AD) research, propelling its development towards intelligence and efficiency. Currently, the development of AD technology follows two main technical paths: modularization and end-to-end. Modularization decompose the driving task into modules such as perception, prediction, planning, and control, and train them separately. Due to the inconsistency of training objectives between modules, the integrated effect suffers from bias. End-to-end attempts to address this issue by utilizing a single model that directly maps from sensor data to control signals. This path has limited learning capabilities in a comprehensive set of features and struggles to handle unpredictable long-tail events and complex urban traffic scenarios. In the face of challenges encountered in both paths, many researchers believe that large language models (LLMs) with powerful reasoning capabilities and extensive knowledge understanding may be the solution, expecting LLMs to provide AD systems with deeper levels of understanding and decision-making capabilities. In light of the challenges faced by both paths, many researchers believe that LLMs, with their powerful reasoning abilities and extensive knowledge, could offer a solution. To understand if LLMs could enhance AD, this paper conducts a thorough analysis of the potential applications of LLMs in AD systems, including exploring their optimization strategies in both modular and end-to-end approaches, with a particular focus on how LLMs can tackle the problems and challenges present in current solutions. Furthermore, we discuss an important question: Can LLM-based artificial general intelligence (AGI) be a key to achieve high-level AD? We further analyze the potential limitations and challenges that LLMs may encounter in promoting the development of AD technology.
Abstract:Recent advancements in medical imaging and artificial intelligence (AI) have greatly enhanced diagnostic capabilities, but the development of effective deep learning (DL) models is still constrained by the lack of high-quality annotated datasets. The traditional manual annotation process by medical experts is time- and resource-intensive, limiting the scalability of these datasets. In this work, we introduce a robust and versatile framework that combines AI and crowdsourcing to improve both the quality and quantity of medical image datasets across different modalities. Our approach utilises a user-friendly online platform that enables a diverse group of crowd annotators to label medical images efficiently. By integrating the MedSAM segmentation AI with this platform, we accelerate the annotation process while maintaining expert-level quality through an algorithm that merges crowd-labelled images. Additionally, we employ pix2pixGAN, a generative AI model, to expand the training dataset with synthetic images that capture realistic morphological features. These methods are combined into a cohesive framework designed to produce an enhanced dataset, which can serve as a universal pre-processing pipeline to boost the training of any medical deep learning segmentation model. Our results demonstrate that this framework significantly improves model performance, especially when training data is limited.
Abstract:In pulmonary tracheal segmentation, the scarcity of annotated data is a prevalent issue in medical segmentation. Additionally, Deep Learning (DL) methods face challenges: the opacity of 'black box' models and the need for performance enhancement. Our Human-Computer Interaction (HCI) based models (RS_UNet, LC_UNet, UUNet, and WD_UNet) address these challenges by combining diverse query strategies with various DL models. We train four HCI models and repeat these steps: (1) Query Strategy: The HCI models select samples that provide the most additional representative information when labeled in each iteration and identify unlabeled samples with the greatest predictive disparity using Wasserstein Distance, Least Confidence, Entropy Sampling, and Random Sampling. (2) Central line correction: Selected samples are used for expert correction of system-generated tracheal central lines in each training round. (3) Update training dataset: Experts update the training dataset after each DL model's training epoch, enhancing the trustworthiness and performance of the models. (4) Model training: The HCI model is trained using the updated dataset and an enhanced UNet version. Experimental results confirm the effectiveness of these HCI-based approaches, showing that WD-UNet, LC-UNet, UUNet, and RS-UNet achieve comparable or superior performance to state-of-the-art DL models. Notably, WD-UNet achieves this with only 15%-35% of the training data, reducing physician annotation time by 65%-85%.
Abstract:Automatic lung organ segmentation on CT images is crucial for lung disease diagnosis. However, the unlimited voxel values and class imbalance of lung organs can lead to false-negative/positive and leakage issues in advanced methods. Additionally, some slender lung organs are easily lost during the recycled down/up-sample procedure, e.g., bronchioles & arterioles, causing severe discontinuity issue. Inspired by these, this paper introduces an effective lung organ segmentation method called Fuzzy Attention-based Border Rendering (FABR) network. Since fuzzy logic can handle the uncertainty in feature extraction, hence the fusion of deep networks and fuzzy sets should be a viable solution for better performance. Meanwhile, unlike prior top-tier methods that operate on all regular dense points, our FABR depicts lung organ regions as cube-trees, focusing only on recycle-sampled border vulnerable points, rendering the severely discontinuous, false-negative/positive organ regions with a novel Global-Local Cube-tree Fusion (GLCF) module. All experimental results, on four challenging datasets of airway & artery, demonstrate that our method can achieve the favorable performance significantly.
Abstract:In the field of medical imaging, particularly in tasks related to early disease detection and prognosis, understanding the reasoning behind AI model predictions is imperative for assessing their reliability. Conventional explanation methods encounter challenges in identifying decisive features in medical image classifications, especially when discriminative features are subtle or not immediately evident. To address this limitation, we propose an agent model capable of generating counterfactual images that prompt different decisions when plugged into a black box model. By employing this agent model, we can uncover influential image patterns that impact the black model's final predictions. Through our methodology, we efficiently identify features that influence decisions of the deep black box. We validated our approach in the rigorous domain of medical prognosis tasks, showcasing its efficacy and potential to enhance the reliability of deep learning models in medical image classification compared to existing interpretation methods. The code will be publicly available at https://github.com/ayanglab/DiffExplainer.
Abstract:Each medical segmentation task should be considered with a specific AI algorithm based on its scenario so that the most accurate prediction model can be obtained. The most popular algorithms in medical segmentation, 3D U-Net and its variants, can directly implement the task of lung trachea segmentation, but its failure to consider the special tree-like structure of the trachea suggests that there is much room for improvement in its segmentation accuracy. Therefore, a research gap exists because a great amount of state-of-the-art DL algorithms are vanilla 3D U-Net structures, which do not introduce the various performance-enhancing modules that come with special natural image modality in lung airway segmentation. In this paper, we proposed two different network structures Branch-Level U-Net (B-UNet) and Branch-Level CE-UNet (B-CE-UNet) which are based on U-Net structure and compared the prediction results with the same dataset. Specially, both of the two networks add branch loss and central line loss to learn the feature of fine branch endings of the airways. Uncertainty estimation algorithms are also included to attain confident predictions and thereby, increase the overall trustworthiness of our whole model. In addition, predictions of the lung trachea based on the maximum connectivity rate were calculated and extracted during post-processing for segmentation refinement and pruning.
Abstract:Airway-related quantitative imaging biomarkers are crucial for examination, diagnosis, and prognosis in pulmonary diseases. However, the manual delineation of airway trees remains prohibitively time-consuming. While significant efforts have been made towards enhancing airway modelling, current public-available datasets concentrate on lung diseases with moderate morphological variations. The intricate honeycombing patterns present in the lung tissues of fibrotic lung disease patients exacerbate the challenges, often leading to various prediction errors. To address this issue, the 'Airway-Informed Quantitative CT Imaging Biomarker for Fibrotic Lung Disease 2023' (AIIB23) competition was organized in conjunction with the official 2023 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI). The airway structures were meticulously annotated by three experienced radiologists. Competitors were encouraged to develop automatic airway segmentation models with high robustness and generalization abilities, followed by exploring the most correlated QIB of mortality prediction. A training set of 120 high-resolution computerised tomography (HRCT) scans were publicly released with expert annotations and mortality status. The online validation set incorporated 52 HRCT scans from patients with fibrotic lung disease and the offline test set included 140 cases from fibrosis and COVID-19 patients. The results have shown that the capacity of extracting airway trees from patients with fibrotic lung disease could be enhanced by introducing voxel-wise weighted general union loss and continuity loss. In addition to the competitive image biomarkers for prognosis, a strong airway-derived biomarker (Hazard ratio>1.5, p<0.0001) was revealed for survival prognostication compared with existing clinical measurements, clinician assessment and AI-based biomarkers.
Abstract:We propose a novel Deep Active Learning (DeepAL) model-3D Wasserstein Discriminative UNet (WD-UNet) for reducing the annotation effort of medical 3D Computed Tomography (CT) segmentation. The proposed WD-UNet learns in a semi-supervised way and accelerates learning convergence to meet or exceed the prediction metrics of supervised learning models. Our method can be embedded with different Active Learning (AL) strategies and different network structures. The model is evaluated on 3D lung airway CT scans for medical segmentation and show that the use of uncertainty metric, which is parametrized as an input of query strategy, leads to more accurate prediction results than some state-of-the-art Deep Learning (DL) supervised models, e.g.,3DUNet and 3D CEUNet. Compared to the above supervised DL methods, our WD-UNet not only saves the cost of annotation for radiologists but also saves computational resources. WD-UNet uses a limited amount of annotated data (35% of the total) to achieve better predictive metrics with a more efficient deep learning model algorithm.
Abstract:Medical image classification and segmentation based on deep learning (DL) are emergency research topics for diagnosing variant viruses of the current COVID-19 situation. In COVID-19 computed tomography (CT) images of the lungs, ground glass turbidity is the most common finding that requires specialist diagnosis. Based on this situation, some researchers propose the relevant DL models which can replace professional diagnostic specialists in clinics when lacking expertise. However, although DL methods have a stunning performance in medical image processing, the limited datasets can be a challenge in developing the accuracy of diagnosis at the human level. In addition, deep learning algorithms face the challenge of classifying and segmenting medical images in three or even multiple dimensions and maintaining high accuracy rates. Consequently, with a guaranteed high level of accuracy, our model can classify the patients' CT images into three types: Normal, Pneumonia and COVID. Subsequently, two datasets are used for segmentation, one of the datasets even has only a limited amount of data (20 cases). Our system combined the classification model and the segmentation model together, a fully integrated diagnostic model was built on the basis of ResNet50 and 3D U-Net algorithm. By feeding with different datasets, the COVID image segmentation of the infected area will be carried out according to classification results. Our model achieves 94.52% accuracy in the classification of lung lesions by 3 types: COVID, Pneumonia and Normal. For future medical use, embedding the model into the medical facilities might be an efficient way of assisting or substituting doctors with diagnoses, therefore, a broader range of the problem of variant viruses in the COVID-19 situation may also be successfully solved.
Abstract:Human-Object Interaction (HOI) detection lies at the core of action understanding. Besides 2D information such as human/object appearance and locations, 3D pose is also usually utilized in HOI learning since its view-independence. However, rough 3D body joints just carry sparse body information and are not sufficient to understand complex interactions. Thus, we need detailed 3D body shape to go further. Meanwhile, the interacted object in 3D is also not fully studied in HOI learning. In light of these, we propose a detailed 2D-3D joint representation learning method. First, we utilize the single-view human body capture method to obtain detailed 3D body, face and hand shapes. Next, we estimate the 3D object location and size with reference to the 2D human-object spatial configuration and object category priors. Finally, a joint learning framework and cross-modal consistency tasks are proposed to learn the joint HOI representation. To better evaluate the 2D ambiguity processing capacity of models, we propose a new benchmark named Ambiguous-HOI consisting of hard ambiguous images. Extensive experiments in large-scale HOI benchmark and Ambiguous-HOI show impressive effectiveness of our method. Code and data are available at https://github.com/DirtyHarryLYL/DJ-RN.