Abstract:For object detection detectors, enhancing model performance hinges on the ability to simultaneously consider inconsistencies across tasks and focus on difficult-to-train samples. Achieving this necessitates incorporating information from both the classification and regression tasks. However, prior work tends to either emphasize difficult-to-train samples within their respective tasks or simply compute classification scores with IoU, often leading to suboptimal model performance. In this paper, we propose a Hybrid Classification-Regression Adaptive Loss, termed as HCRAL. Specifically, we introduce the Residual of Classification and IoU (RCI) module for cross-task supervision, addressing task inconsistencies, and the Conditioning Factor (CF) to focus on difficult-to-train samples within each task. Furthermore, we introduce a new strategy named Expanded Adaptive Training Sample Selection (EATSS) to provide additional samples that exhibit classification and regression inconsistencies. To validate the effectiveness of the proposed method, we conduct extensive experiments on COCO test-dev. Experimental evaluations demonstrate the superiority of our approachs. Additionally, we designed experiments by separately combining the classification and regression loss with regular loss functions in popular one-stage models, demonstrating improved performance.
Abstract:Diffusion models usher a new era of video editing, flexibly manipulating the video contents with text prompts. Despite the widespread application demand in editing human-centered videos, these models face significant challenges in handling complex objects like humans. In this paper, we introduce DeCo, a novel video editing framework specifically designed to treat humans and the background as separate editable targets, ensuring global spatial-temporal consistency by maintaining the coherence of each individual component. Specifically, we propose a decoupled dynamic human representation that utilizes a parametric human body prior to generate tailored humans while preserving the consistent motions as the original video. In addition, we consider the background as a layered atlas to apply text-guided image editing approaches on it. To further enhance the geometry and texture of humans during the optimization, we extend the calculation of score distillation sampling into normal space and image space. Moreover, we tackle inconsistent lighting between the edited targets by leveraging a lighting-aware video harmonizer, a problem previously overlooked in decompose-edit-combine approaches. Extensive qualitative and numerical experiments demonstrate that DeCo outperforms prior video editing methods in human-centered videos, especially in longer videos.
Abstract:A large amount of User Generated Content (UGC) is uploaded to the Internet daily and displayed to people world-widely through the client side (e.g., mobile and PC). This requires the cropping algorithms to produce the aesthetic thumbnail within a specific aspect ratio on different devices. However, existing image cropping works mainly focus on landmark or landscape images, which fail to model the relations among the multi-objects with the complex background in UGC. Besides, previous methods merely consider the aesthetics of the cropped images while ignoring the content integrity, which is crucial for UGC cropping. In this paper, we propose a Spatial-Semantic Collaborative cropping network (S2CNet) for arbitrary user generated content accompanied by a new cropping benchmark. Specifically, we first mine the visual genes of the potential objects. Then, the suggested adaptive attention graph recasts this task as a procedure of information association over visual nodes. The underlying spatial and semantic relations are ultimately centralized to the crop candidate through differentiable message passing, which helps our network efficiently to preserve both the aesthetics and the content integrity. Extensive experiments on the proposed UGCrop5K and other public datasets demonstrate the superiority of our approach over state-of-the-art counterparts. Our project is available at https://github.com/suyukun666/S2CNet.
Abstract:Point-based interactive image segmentation can ease the burden of mask annotation in applications such as semantic segmentation and image editing. However, fully extracting the target mask with limited user inputs remains challenging. We introduce a novel method, Variance-Insensitive and Target-Preserving Mask Refinement to enhance segmentation quality with fewer user inputs. Regarding the last segmentation result as the initial mask, an iterative refinement process is commonly employed to continually enhance the initial mask. Nevertheless, conventional techniques suffer from sensitivity to the variance in the initial mask. To circumvent this problem, our proposed method incorporates a mask matching algorithm for ensuring consistent inferences from different types of initial masks. We also introduce a target-aware zooming algorithm to preserve object information during downsampling, balancing efficiency and accuracy. Experiments on GrabCut, Berkeley, SBD, and DAVIS datasets demonstrate our method's state-of-the-art performance in interactive image segmentation.
Abstract:Predicting typhoon intensity accurately across space and time is crucial for issuing timely disaster warnings and facilitating emergency response. This has vast potential for minimizing life losses and property damages as well as reducing economic and environmental impacts. Leveraging satellite imagery for scenario analysis is effective but also introduces additional challenges due to the complex relations among clouds and the highly dynamic context. Existing deep learning methods in this domain rely on convolutional neural networks (CNNs), which suffer from limited per-layer receptive fields. This limitation hinders their ability to capture long-range dependencies and global contextual knowledge during inference. In response, we introduce a novel approach, namely "Typhoon Intensity Transformer" (Tint), which leverages self-attention mechanisms with global receptive fields per layer. Tint adopts a sequence-to-sequence feature representation learning perspective. It begins by cutting a given satellite image into a sequence of patches and recursively employs self-attention operations to extract both local and global contextual relations between all patch pairs simultaneously, thereby enhancing per-patch feature representation learning. Extensive experiments on a publicly available typhoon benchmark validate the efficacy of Tint in comparison with both state-of-the-art deep learning and conventional meteorological methods. Our code is available at https://github.com/chen-huanxin/Tint.
Abstract:3D virtual try-on enjoys many potential applications and hence has attracted wide attention. However, it remains a challenging task that has not been adequately solved. Existing 2D virtual try-on methods cannot be directly extended to 3D since they lack the ability to perceive the depth of each pixel. Besides, 3D virtual try-on approaches are mostly built on the fixed topological structure and with heavy computation. To deal with these problems, we propose a Decomposed Implicit garment transfer network (DI-Net), which can effortlessly reconstruct a 3D human mesh with the newly try-on result and preserve the texture from an arbitrary perspective. Specifically, DI-Net consists of two modules: 1) A complementary warping module that warps the reference image to have the same pose as the source image through dense correspondence learning and sparse flow learning; 2) A geometry-aware decomposed transfer module that decomposes the garment transfer into image layout based transfer and texture based transfer, achieving surface and texture reconstruction by constructing pixel-aligned implicit functions. Experimental results show the effectiveness and superiority of our method in the 3D virtual try-on task, which can yield more high-quality results over other existing methods.
Abstract:Makeup transfer is a process of transferring the makeup style from a reference image to the source images, while preserving the source images' identities. This technique is highly desirable and finds many applications. However, existing methods lack fine-level control of the makeup style, making it challenging to achieve high-quality results when dealing with large spatial misalignments. To address this problem, we propose a novel Spatial Alignment and Region-Adaptive normalization method (SARA) in this paper. Our method generates detailed makeup transfer results that can handle large spatial misalignments and achieve part-specific and shade-controllable makeup transfer. Specifically, SARA comprises three modules: Firstly, a spatial alignment module that preserves the spatial context of makeup and provides a target semantic map for guiding the shape-independent style codes. Secondly, a region-adaptive normalization module that decouples shape and makeup style using per-region encoding and normalization, which facilitates the elimination of spatial misalignments. Lastly, a makeup fusion module blends identity features and makeup style by injecting learned scale and bias parameters. Experimental results show that our SARA method outperforms existing methods and achieves state-of-the-art performance on two public datasets.
Abstract:Weakly supervised object localization (WSOL) strives to learn to localize objects with only image-level supervision. Due to the local receptive fields generated by convolution operations, previous CNN-based methods suffer from partial activation issues, concentrating on the object's discriminative part instead of the entire entity scope. Benefiting from the capability of the self-attention mechanism to acquire long-range feature dependencies, Vision Transformer has been recently applied to alleviate the local activation drawbacks. However, since the transformer lacks the inductive localization bias that are inherent in CNNs, it may cause a divergent activation problem resulting in an uncertain distinction between foreground and background. In this work, we proposed a novel Semantic-Constraint Matching Network (SCMN) via a transformer to converge on the divergent activation. Specifically, we first propose a local patch shuffle strategy to construct the image pairs, disrupting local patches while guaranteeing global consistency. The paired images that contain the common object in spatial are then fed into the Siamese network encoder. We further design a semantic-constraint matching module, which aims to mine the co-object part by matching the coarse class activation maps (CAMs) extracted from the pair images, thus implicitly guiding and calibrating the transformer network to alleviate the divergent activation. Extensive experimental results conducted on two challenging benchmarks, including CUB-200-2011 and ILSVRC datasets show that our method can achieve the new state-of-the-art performance and outperform the previous method by a large margin.
Abstract:Multi-Object Tracking (MOT) is a crucial computer vision task that aims to predict the bounding boxes and identities of objects simultaneously. While state-of-the-art methods have made remarkable progress by jointly optimizing the multi-task problems of detection and Re-ID feature learning, yet, few approaches explore to tackle the occlusion issue, which is a long-standing challenge in the MOT field. Generally, occluded objects may hinder the detector from estimating the bounding boxes, resulting in fragmented trajectories. And the learned occluded Re-ID embeddings are less distinct since they contain interferer. To this end, we propose an occlusion-aware detection and Re-ID calibrated network for multi-object tracking, termed as ORCTrack. Specifically, we propose an Occlusion-Aware Attention (OAA) module in the detector that highlights the object features while suppressing the occluded background regions. OAA can serve as a modulator that enhances the detector for some potentially occluded objects. Furthermore, we design a Re-ID embedding matching block based on the optimal transport problem, which focuses on enhancing and calibrating the Re-ID representations through different adjacent frames complementarily. To validate the effectiveness of the proposed method, extensive experiments are conducted on two challenging VisDrone2021-MOT and KITTI benchmarks. Experimental evaluations demonstrate the superiority of our approach, which can achieve new state-of-the-art performance and enjoy high run-time efficiency.
Abstract:Deep learning has proved to be very effective in video action recognition. Video violence recognition attempts to learn the human multi-dynamic behaviours in more complex scenarios. In this work, we develop a method for video violence recognition from a new perspective of skeleton points. Unlike the previous works, we first formulate 3D skeleton point clouds from human skeleton sequences extracted from videos and then perform interaction learning on these 3D skeleton point clouds. Specifically, we propose two types of Skeleton Points Interaction Learning (SPIL) strategies: (i) Local-SPIL: by constructing a specific weight distribution strategy between local regional points, Local-SPIL aims to selectively focus on the most relevant parts of them based on their features and spatial-temporal position information. In order to capture diverse types of relation information, a multi-head mechanism is designed to aggregate different features from independent heads to jointly handle different types of relationships between points. (ii) Global-SPIL: to better learn and refine the features of the unordered and unstructured skeleton points, Global-SPIL employs the self-attention layer that operates directly on the sampled points, which can help to make the output more permutation-invariant and well-suited for our task. Extensive experimental results validate the effectiveness of our approach and show that our model outperforms the existing networks and achieves new state-of-the-art performance on video violence datasets.