Abstract:While recent image warping approaches achieved remarkable success on existing benchmarks, they still require training separate models for each specific task and cannot generalize well to different camera models or customized manipulations. To address diverse types of warping in practice, we propose a Multiple-in-One image WArping model (named MOWA) in this work. Specifically, we mitigate the difficulty of multi-task learning by disentangling the motion estimation at both the region level and pixel level. To further enable dynamic task-aware image warping, we introduce a lightweight point-based classifier that predicts the task type, serving as prompts to modulate the feature maps for better estimation. To our knowledge, this is the first work that solves multiple practical warping tasks in one single model. Extensive experiments demonstrate that our MOWA, which is trained on six tasks for multiple-in-one image warping, outperforms state-of-the-art task-specific models across most tasks. Moreover, MOWA also exhibits promising potential to generalize into unseen scenes, as evidenced by cross-domain and zero-shot evaluations. The code will be made publicly available.
Abstract:Whole-body pose and shape estimation aims to jointly predict different behaviors (e.g., pose, hand gesture, facial expression) of the entire human body from a monocular image. Existing methods often exhibit degraded performance under the complexity of in-the-wild scenarios. We argue that the accuracy and reliability of these models are significantly affected by the quality of the predicted \textit{bounding box}, e.g., the scale and alignment of body parts. The natural discrepancy between the ideal bounding box annotations and model detection results is particularly detrimental to the performance of whole-body pose and shape estimation. In this paper, we propose a novel framework to enhance the robustness of whole-body pose and shape estimation. Our framework incorporates three new modules to address the above challenges from three perspectives: \textbf{1) Localization Module} enhances the model's awareness of the subject's location and semantics within the image space. \textbf{2) Contrastive Feature Extraction Module} encourages the model to be invariant to robust augmentations by incorporating contrastive loss with dedicated positive samples. \textbf{3) Pixel Alignment Module} ensures the reprojected mesh from the predicted camera and body model parameters are accurate and pixel-aligned. We perform comprehensive experiments to demonstrate the effectiveness of our proposed framework on body, hands, face and whole-body benchmarks. Codebase is available at \url{https://github.com/robosmplx/robosmplx}.
Abstract:3D virtual try-on enjoys many potential applications and hence has attracted wide attention. However, it remains a challenging task that has not been adequately solved. Existing 2D virtual try-on methods cannot be directly extended to 3D since they lack the ability to perceive the depth of each pixel. Besides, 3D virtual try-on approaches are mostly built on the fixed topological structure and with heavy computation. To deal with these problems, we propose a Decomposed Implicit garment transfer network (DI-Net), which can effortlessly reconstruct a 3D human mesh with the newly try-on result and preserve the texture from an arbitrary perspective. Specifically, DI-Net consists of two modules: 1) A complementary warping module that warps the reference image to have the same pose as the source image through dense correspondence learning and sparse flow learning; 2) A geometry-aware decomposed transfer module that decomposes the garment transfer into image layout based transfer and texture based transfer, achieving surface and texture reconstruction by constructing pixel-aligned implicit functions. Experimental results show the effectiveness and superiority of our method in the 3D virtual try-on task, which can yield more high-quality results over other existing methods.
Abstract:Makeup transfer is a process of transferring the makeup style from a reference image to the source images, while preserving the source images' identities. This technique is highly desirable and finds many applications. However, existing methods lack fine-level control of the makeup style, making it challenging to achieve high-quality results when dealing with large spatial misalignments. To address this problem, we propose a novel Spatial Alignment and Region-Adaptive normalization method (SARA) in this paper. Our method generates detailed makeup transfer results that can handle large spatial misalignments and achieve part-specific and shade-controllable makeup transfer. Specifically, SARA comprises three modules: Firstly, a spatial alignment module that preserves the spatial context of makeup and provides a target semantic map for guiding the shape-independent style codes. Secondly, a region-adaptive normalization module that decouples shape and makeup style using per-region encoding and normalization, which facilitates the elimination of spatial misalignments. Lastly, a makeup fusion module blends identity features and makeup style by injecting learned scale and bias parameters. Experimental results show that our SARA method outperforms existing methods and achieves state-of-the-art performance on two public datasets.
Abstract:In this work, we tackle the challenging problem of long-tailed image recognition. Previous long-tailed recognition approaches mainly focus on data augmentation or re-balancing strategies for the tail classes to give them more attention during model training. However, these methods are limited by the small number of training images for the tail classes, which results in poor feature representations. To address this issue, we propose the Latent Categories based long-tail Recognition (LCReg) method. Our hypothesis is that common latent features shared by head and tail classes can be used to improve feature representation. Specifically, we learn a set of class-agnostic latent features shared by both head and tail classes, and then use semantic data augmentation on the latent features to implicitly increase the diversity of the training sample. We conduct extensive experiments on five long-tailed image recognition datasets, and the results show that our proposed method significantly improves the baselines.
Abstract:New lesion segmentation is essential to estimate the disease progression and therapeutic effects during multiple sclerosis (MS) clinical treatments. However, the expensive data acquisition and expert annotation restrict the feasibility of applying large-scale deep learning models. Since single-time-point samples with all-lesion labels are relatively easy to collect, exploiting them to train deep models is highly desirable to improve new lesion segmentation. Therefore, we proposed a coaction segmentation (CoactSeg) framework to exploit the heterogeneous data (i.e., new-lesion annotated two-time-point data and all-lesion annotated single-time-point data) for new MS lesion segmentation. The CoactSeg model is designed as a unified model, with the same three inputs (the baseline, follow-up, and their longitudinal brain differences) and the same three outputs (the corresponding all-lesion and new-lesion predictions), no matter which type of heterogeneous data is being used. Moreover, a simple and effective relation regularization is proposed to ensure the longitudinal relations among the three outputs to improve the model learning. Extensive experiments demonstrate that utilizing the heterogeneous data and the proposed longitudinal relation constraint can significantly improve the performance for both new-lesion and all-lesion segmentation tasks. Meanwhile, we also introduce an in-house MS-23v1 dataset, including 38 Oceania single-time-point samples with all-lesion labels. Codes and the dataset are released at https://github.com/ycwu1997/CoactSeg.
Abstract:Current methods for few-shot segmentation (FSSeg) have mainly focused on improving the performance of novel classes while neglecting the performance of base classes. To overcome this limitation, the task of generalized few-shot semantic segmentation (GFSSeg) has been introduced, aiming to predict segmentation masks for both base and novel classes. However, the current prototype-based methods do not explicitly consider the relationship between base and novel classes when updating prototypes, leading to a limited performance in identifying true categories. To address this challenge, we propose a class contrastive loss and a class relationship loss to regulate prototype updates and encourage a large distance between prototypes from different classes, thus distinguishing the classes from each other while maintaining the performance of the base classes. Our proposed approach achieves new state-of-the-art performance for the generalized few-shot segmentation task on PASCAL VOC and MS COCO datasets.
Abstract:The task of 3D single object tracking (SOT) with LiDAR point clouds is crucial for various applications, such as autonomous driving and robotics. However, existing approaches have primarily relied on appearance matching or motion modeling within only two successive frames, thereby overlooking the long-range continuous motion property of objects in 3D space. To address this issue, this paper presents a novel approach that views each tracklet as a continuous stream: at each timestamp, only the current frame is fed into the network to interact with multi-frame historical features stored in a memory bank, enabling efficient exploitation of sequential information. To achieve effective cross-frame message passing, a hybrid attention mechanism is designed to account for both long-range relation modeling and local geometric feature extraction. Furthermore, to enhance the utilization of multi-frame features for robust tracking, a contrastive sequence enhancement strategy is designed, which uses ground truth tracklets to augment training sequences and promote discrimination against false positives in a contrastive manner. Extensive experiments demonstrate that the proposed method outperforms the state-of-the-art method by significant margins (approximately 8%, 6%, and 12% improvements in the success performance on KITTI, nuScenes, and Waymo, respectively).
Abstract:Weakly-supervised point cloud segmentation with extremely limited labels is highly desirable to alleviate the expensive costs of collecting densely annotated 3D points. This paper explores to apply the consistency regularization that is commonly used in weakly-supervised learning, for its point cloud counterpart with multiple data-specific augmentations, which has not been well studied. We observe that the straightforward way of applying consistency constraints to weakly-supervised point cloud segmentation has two major limitations: noisy pseudo labels due to the conventional confidence-based selection and insufficient consistency constraints due to discarding unreliable pseudo labels. Therefore, we propose a novel Reliability-Adaptive Consistency Network (RAC-Net) to use both prediction confidence and model uncertainty to measure the reliability of pseudo labels and apply consistency training on all unlabeled points while with different consistency constraints for different points based on the reliability of corresponding pseudo labels. Experimental results on the S3DIS and ScanNet-v2 benchmark datasets show that our model achieves superior performance in weakly-supervised point cloud segmentation. The code will be released.
Abstract:Weakly supervised point cloud segmentation, i.e. semantically segmenting a point cloud with only a few labeled points in the whole 3D scene, is highly desirable due to the heavy burden of collecting abundant dense annotations for the model training. However, existing methods remain challenging to accurately segment 3D point clouds since limited annotated data may lead to insufficient guidance for label propagation to unlabeled data. Considering the smoothness-based methods have achieved promising progress, in this paper, we advocate applying the consistency constraint under various perturbations to effectively regularize unlabeled 3D points. Specifically, we propose a novel DAT (\textbf{D}ual \textbf{A}daptive \textbf{T}ransformations) model for weakly supervised point cloud segmentation, where the dual adaptive transformations are performed via an adversarial strategy at both point-level and region-level, aiming at enforcing the local and structural smoothness constraints on 3D point clouds. We evaluate our proposed DAT model with two popular backbones on the large-scale S3DIS and ScanNet-V2 datasets. Extensive experiments demonstrate that our model can effectively leverage the unlabeled 3D points and achieve significant performance gains on both datasets, setting new state-of-the-art performance for weakly supervised point cloud segmentation.