Abstract:Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS) is a prevalent chronic breathing disorder caused by upper airway obstruction. Previous studies advanced OSAHS evaluation through machine learning-based systems trained on sleep snoring or speech signal datasets. However, constructing datasets for training a precise and rapid OSAHS evaluation system poses a challenge, since 1) it is time-consuming to collect sleep snores and 2) the speech signal is limited in reflecting upper airway obstruction. In this paper, we propose a new snoring dataset for OSAHS evaluation, named SimuSOE, in which a novel and time-effective snoring collection method is introduced for tackling the above problems. In particular, we adopt simulated snoring which is a type of snore intentionally emitted by patients to replace natural snoring. Experimental results indicate that the simulated snoring signal during wakefulness can serve as an effective feature in OSAHS preliminary screening.
Abstract:Vision transformers have emerged as a promising alternative to convolutional neural networks for various image analysis tasks, offering comparable or superior performance. However, one significant drawback of ViTs is their resource-intensive nature, leading to increased memory footprint, computation complexity, and power consumption. To democratize this high-performance technology and make it more environmentally friendly, it is essential to compress ViT models, reducing their resource requirements while maintaining high performance. In this paper, we introduce a new block-structured pruning to address the resource-intensive issue for ViTs, offering a balanced trade-off between accuracy and hardware acceleration. Unlike unstructured pruning or channel-wise structured pruning, block pruning leverages the block-wise structure of linear layers, resulting in more efficient matrix multiplications. To optimize this pruning scheme, our paper proposes a novel hardware-aware learning objective that simultaneously maximizes speedup and minimizes power consumption during inference, tailored to the block sparsity structure. This objective eliminates the need for empirical look-up tables and focuses solely on reducing parametrized layer connections. Moreover, our paper provides a lightweight algorithm to achieve post-training pruning for ViTs, utilizing second-order Taylor approximation and empirical optimization to solve the proposed hardware-aware objective. Extensive experiments on ImageNet are conducted across various ViT architectures, including DeiT-B and DeiT-S, demonstrating competitive performance with other pruning methods and achieving a remarkable balance between accuracy preservation and power savings. Especially, we achieve up to 3.93x and 1.79x speedups on dedicated hardware and GPUs respectively for DeiT-B, and also observe an inference power reduction by 1.4x on real-world GPUs.
Abstract:Exploring proper way to conduct multi-speech feature fusion for cross-corpus speech emotion recognition is crucial as different speech features could provide complementary cues reflecting human emotion status. While most previous approaches only extract a single speech feature for emotion recognition, existing fusion methods such as concatenation, parallel connection, and splicing ignore heterogeneous patterns in the interaction between features and features, resulting in performance of existing systems. In this paper, we propose a novel graph-based fusion method to explicitly model the relationships between every pair of speech features. Specifically, we propose a multi-dimensional edge features learning strategy called Graph-based multi-Feature fusion method for speech emotion recognition. It represents each speech feature as a node and learns multi-dimensional edge features to explicitly describe the relationship between each feature-feature pair in the context of emotion recognition. This way, the learned multi-dimensional edge features encode speech feature-level information from both the vertex and edge dimensions. Our Approach consists of three modules: an Audio Feature Generation(AFG)module, an Audio-Feature Multi-dimensional Edge Feature(AMEF) module and a Speech Emotion Recognition (SER) module. The proposed methodology yielded satisfactory outcomes on the SEWA dataset. Furthermore, the method demonstrated enhanced performance compared to the baseline in the AVEC 2019 Workshop and Challenge. We used data from two cultures as our training and validation sets: two cultures containing German and Hungarian on the SEWA dataset, the CCC scores for German are improved by 17.28% for arousal and 7.93% for liking. The outcomes of our methodology demonstrate a 13% improvement over alternative fusion techniques, including those employing one dimensional edge-based feature fusion approach.
Abstract:Timbre, the sound's unique "color", is fundamental to how we perceive and appreciate music. This review explores the multifaceted world of timbre perception and representation. It begins by tracing the word's origin, offering an intuitive grasp of the concept. Building upon this foundation, the article delves into the complexities of defining and measuring timbre. It then explores the concept and techniques of timbre space, a powerful tool for visualizing how we perceive different timbres. The review further examines recent advancements in timbre manipulation and representation, including the increasingly utilized machine learning techniques. While the underlying neural mechanisms remain partially understood, the article discusses current neuroimaging techniques used to investigate this aspect of perception. Finally, it summarizes key takeaways, identifies promising future research directions, and emphasizes the potential applications of timbre research in music technology, assistive technologies, and our overall understanding of auditory perception.
Abstract:Deep neural networks (DNNs) have been widely used in many artificial intelligence (AI) tasks. However, deploying them brings significant challenges due to the huge cost of memory, energy, and computation. To address these challenges, researchers have developed various model compression techniques such as model quantization and model pruning. Recently, there has been a surge in research of compression methods to achieve model efficiency while retaining the performance. Furthermore, more and more works focus on customizing the DNN hardware accelerators to better leverage the model compression techniques. In addition to efficiency, preserving security and privacy is critical for deploying DNNs. However, the vast and diverse body of related works can be overwhelming. This inspires us to conduct a comprehensive survey on recent research toward the goal of high-performance, cost-efficient, and safe deployment of DNNs. Our survey first covers the mainstream model compression techniques such as model quantization, model pruning, knowledge distillation, and optimizations of non-linear operations. We then introduce recent advances in designing hardware accelerators that can adapt to efficient model compression approaches. Additionally, we discuss how homomorphic encryption can be integrated to secure DNN deployment. Finally, we discuss several issues, such as hardware evaluation, generalization, and integration of various compression approaches. Overall, we aim to provide a big picture of efficient DNNs, from algorithm to hardware accelerators and security perspectives.
Abstract:Federated learning (FL) involves multiple heterogeneous clients collaboratively training a global model via iterative local updates and model fusion. The generalization of FL's global model has a large gap compared with centralized training, which is its bottleneck for broader applications. In this paper, we study and improve FL's generalization through a fundamental ``connectivity'' perspective, which means how the local models are connected in the parameter region and fused into a generalized global model. The term ``connectivity'' is derived from linear mode connectivity (LMC), studying the interpolated loss landscape of two different solutions (e.g., modes) of neural networks. Bridging the gap between LMC and FL, in this paper, we leverage fixed anchor models to empirically and theoretically study the transitivity property of connectivity from two models (LMC) to a group of models (model fusion in FL). Based on the findings, we propose FedGuCci and FedGuCci+, improving group connectivity for better generalization. It is shown that our methods can boost the generalization of FL under client heterogeneity across various tasks (4 CV datasets and 6 NLP datasets), models (both convolutional and transformer-based), and training paradigms (both from-scratch and pretrain-finetune).
Abstract:In deep learning, stochastic gradient descent often yields functionally similar yet widely scattered solutions in the weight space even under the same initialization, causing barriers in the Linear Mode Connectivity (LMC) landscape. Overcoming these barriers is crucial for understanding deep learning dynamics and enhancing model-fusion algorithms. Previous studies highlight the role of permutation symmetry in reducing post-training barriers through network permutation. However, these post-hoc methods, demanding extra computations, are less effective for larger, complex models (e.g., ViT, LLM) due to numerous permutation matrices. Thus, in this paper, we study training-time neuron alignment. Our hypothesis suggests that training-time permutation subspace can reduce LMC barriers for free. We find that pruning at initialization supports this. Beyond pruning, we introduce TNA-PFN, a simple yet lossless algorithm using a partial gradient mask during training. TNA-PFN is theoretically and empirically validated for reducing LMC barriers. It excels in wide model fusion applications, especially in federated learning, two algorithms based on TNA-FPN that are proposed to show its prospects even under heterogeneous datasets. Moreover, TNA-PFN can enhance the generalization of model soup for vision transformers and ColD fusion for pretrained language models.
Abstract:How humans and machines make sense of current inputs for relation reasoning and question-answering while putting the perceived information into context of our past memories, has been a challenging conundrum in cognitive science and artificial intelligence. Inspired by human brain's memory system and cognitive architectures, we propose a PMI framework that consists of perception, memory and inference components. Notably, the memory module comprises working and long-term memory, with the latter endowed with a higher-order structure to retain more accumulated knowledge and experiences. Through a differentiable competitive write access, current perceptions update working memory, which is later merged with long-term memory via outer product associations, averting memory overflow and minimizing information conflicts. In the inference module, relevant information is retrieved from two separate memory origins and associatively integrated to attain a more comprehensive and precise interpretation of current perceptions. We exploratively apply our PMI to improve prevailing Transformers and CNN models on question-answering tasks like bAbI-20k and Sort-of-CLEVR datasets, as well as relation calculation and image classification tasks, and in each case, our PMI enhancements consistently outshine their original counterparts significantly. Visualization analyses reveal that memory consolidation, along with the interaction and integration of information from diverse memory sources, substantially contributes to the model effectiveness on inference tasks.
Abstract:In this work, we tackle the challenging problem of long-tailed image recognition. Previous long-tailed recognition approaches mainly focus on data augmentation or re-balancing strategies for the tail classes to give them more attention during model training. However, these methods are limited by the small number of training images for the tail classes, which results in poor feature representations. To address this issue, we propose the Latent Categories based long-tail Recognition (LCReg) method. Our hypothesis is that common latent features shared by head and tail classes can be used to improve feature representation. Specifically, we learn a set of class-agnostic latent features shared by both head and tail classes, and then use semantic data augmentation on the latent features to implicitly increase the diversity of the training sample. We conduct extensive experiments on five long-tailed image recognition datasets, and the results show that our proposed method significantly improves the baselines.
Abstract:In this paper, we propose a novel layer-adaptive weight-pruning approach for Deep Neural Networks (DNNs) that addresses the challenge of optimizing the output distortion minimization while adhering to a target pruning ratio constraint. Our approach takes into account the collective influence of all layers to design a layer-adaptive pruning scheme. We discover and utilize a very important additivity property of output distortion caused by pruning weights on multiple layers. This property enables us to formulate the pruning as a combinatorial optimization problem and efficiently solve it through dynamic programming. By decomposing the problem into sub-problems, we achieve linear time complexity, making our optimization algorithm fast and feasible to run on CPUs. Our extensive experiments demonstrate the superiority of our approach over existing methods on the ImageNet and CIFAR-10 datasets. On CIFAR-10, our method achieves remarkable improvements, outperforming others by up to 1.0% for ResNet-32, 0.5% for VGG-16, and 0.7% for DenseNet-121 in terms of top-1 accuracy. On ImageNet, we achieve up to 4.7% and 4.6% higher top-1 accuracy compared to other methods for VGG-16 and ResNet-50, respectively. These results highlight the effectiveness and practicality of our approach for enhancing DNN performance through layer-adaptive weight pruning. Code will be available on https://github.com/Akimoto-Cris/RD_VIT_PRUNE.