Abstract:Electrocardiogram (ECG) signals play a crucial role in diagnosing cardiovascular diseases. To reduce power consumption in wearable or portable devices used for long-term ECG monitoring, super-resolution (SR) techniques have been developed, enabling these devices to collect and transmit signals at a lower sampling rate. In this study, we propose MSECG, a compact neural network model designed for ECG SR. MSECG combines the strength of the recurrent Mamba model with convolutional layers to capture both local and global dependencies in ECG waveforms, allowing for the effective reconstruction of high-resolution signals. We also assess the model's performance in real-world noisy conditions by utilizing ECG data from the PTB-XL database and noise data from the MIT-BIH Noise Stress Test Database. Experimental results show that MSECG outperforms two contemporary ECG SR models under both clean and noisy conditions while using fewer parameters, offering a more powerful and robust solution for long-term ECG monitoring applications.
Abstract:Surface electromyography (sEMG) recordings can be contaminated by electrocardiogram (ECG) signals when the monitored muscle is closed to the heart. Traditional signal-processing-based approaches, such as high-pass filtering and template subtraction, have been used to remove ECG interference but are often limited in their effectiveness. Recently, neural-network-based methods have shown greater promise for sEMG denoising, but they still struggle to balance both efficiency and effectiveness. In this study, we introduce MSEMG, a novel system that integrates the Mamba State Space Model with a convolutional neural network to serve as a lightweight sEMG denoising model. We evaluated MSEMG using sEMG data from the Non-Invasive Adaptive Prosthetics database and ECG signals from the MIT-BIH Normal Sinus Rhythm Database. The results show that MSEMG outperforms existing methods, generating higher-quality sEMG signals with fewer parameters. The source code for MSEMG is available at https://github.com/tonyliu0910/MSEMG.
Abstract:Surface electromyography (sEMG) is a widely employed bio-signal that captures human muscle activity via electrodes placed on the skin. Several studies have proposed methods to remove sEMG contaminants, as non-invasive measurements render sEMG susceptible to various contaminants. However, these approaches often rely on heuristic-based optimization and are sensitive to the contaminant type. A more potent, robust, and generalized sEMG denoising approach should be developed for various healthcare and human-computer interaction applications. This paper proposes a novel neural network (NN)-based sEMG denoising method called TrustEMG-Net. It leverages the potent nonlinear mapping capability and data-driven nature of NNs. TrustEMG-Net adopts a denoising autoencoder structure by combining U-Net with a Transformer encoder using a representation-masking approach. The proposed approach is evaluated using the Ninapro sEMG database with five common contamination types and signal-to-noise ratio (SNR) conditions. Compared with existing sEMG denoising methods, TrustEMG-Net achieves exceptional performance across the five evaluation metrics, exhibiting a minimum improvement of 20%. Its superiority is consistent under various conditions, including SNRs ranging from -14 to 2 dB and five contaminant types. An ablation study further proves that the design of TrustEMG-Net contributes to its optimality, providing high-quality sEMG and serving as an effective, robust, and generalized denoising solution for sEMG applications.
Abstract:Electrocardiogram (ECG) is an important non-invasive method for diagnosing cardiovascular disease. However, ECG signals are susceptible to noise contamination, such as electrical interference or signal wandering, which reduces diagnostic accuracy. Various ECG denoising methods have been proposed, but most existing methods yield suboptimal performance under very noisy conditions or require several steps during inference, leading to latency during online processing. In this paper, we propose a novel ECG denoising model, namely Mamba-based ECG Enhancer (MECG-E), which leverages the Mamba architecture known for its fast inference and outstanding nonlinear mapping capabilities. Experimental results indicate that MECG-E surpasses several well-known existing models across multiple metrics under different noise conditions. Additionally, MECG-E requires less inference time than state-of-the-art diffusion-based ECG denoisers, demonstrating the model's functionality and efficiency.
Abstract:Noise robustness is critical when applying automatic speech recognition (ASR) in real-world scenarios. One solution involves the used of speech enhancement (SE) models as the front end of ASR. However, neural network-based (NN-based) SE often introduces artifacts into the enhanced signals and harms ASR performance, particularly when SE and ASR are independently trained. Therefore, this study introduces a simple yet effective SE post-processing technique to address the gap between various pre-trained SE and ASR models. A bridge module, which is a lightweight NN, is proposed to evaluate the signal-level information of the speech signal. Subsequently, using the signal-level information, the observation addition technique is applied to effectively reduce the shortcomings of SE. The experimental results demonstrate the success of our method in integrating diverse pre-trained SE and ASR models, considerably boosting the ASR robustness. Crucially, no prior knowledge of the ASR or speech contents is required during the training or inference stages. Moreover, the effectiveness of this approach extends to different datasets without necessitating the fine-tuning of the bridge module, ensuring efficiency and improved generalization.
Abstract:In practical scenarios involving the measurement of surface electromyography (sEMG) in muscles, particularly those areas near the heart, one of the primary sources of contamination is the presence of electrocardiogram (ECG) signals. To assess the quality of real-world sEMG data more effectively, this study proposes QASE-net, a new non-intrusive model that predicts the SNR of sEMG signals. QASE-net combines CNN-BLSTM with attention mechanisms and follows an end-to-end training strategy. Our experimental framework utilizes real-world sEMG and ECG data from two open-access databases, the Non-Invasive Adaptive Prosthetics Database and the MIT-BIH Normal Sinus Rhythm Database, respectively. The experimental results demonstrate the superiority of QASE-net over the previous assessment model, exhibiting significantly reduced prediction errors and notably higher linear correlations with the ground truth. These findings show the potential of QASE-net to substantially enhance the reliability and precision of sEMG quality assessment in practical applications.
Abstract:Surface electromyography (sEMG) recordings can be influenced by electrocardiogram (ECG) signals when the muscle being monitored is close to the heart. Several existing methods use signal-processing-based approaches, such as high-pass filter and template subtraction, while some derive mapping functions to restore clean sEMG signals from noisy sEMG (sEMG with ECG interference). Recently, the score-based diffusion model, a renowned generative model, has been introduced to generate high-quality and accurate samples with noisy input data. In this study, we proposed a novel approach, termed SDEMG, as a score-based diffusion model for sEMG signal denoising. To evaluate the proposed SDEMG approach, we conduct experiments to reduce noise in sEMG signals, employing data from an openly accessible source, the Non-Invasive Adaptive Prosthetics database, along with ECG signals from the MIT-BIH Normal Sinus Rhythm Database. The experiment result indicates that SDEMG outperformed comparative methods and produced high-quality sEMG samples. The source code of SDEMG the framework is available at: https://github.com/tonyliu0910/SDEMG
Abstract:Electrocardiogram (ECG) artifact contamination often occurs in surface electromyography (sEMG) applications when the measured muscles are in proximity to the heart. Previous studies have developed and proposed various methods, such as high-pass filtering, template subtraction and so forth. However, these methods remain limited by the requirement of reference signals and distortion of original sEMG. This study proposed a novel denoising method to eliminate ECG artifacts from the single-channel sEMG signals using fully convolutional networks (FCN). The proposed method adopts a denoise autoencoder structure and powerful nonlinear mapping capability of neural networks for sEMG denoising. We compared the proposed approach with conventional approaches, including high-pass filters and template subtraction, on open datasets called the Non-Invasive Adaptive Prosthetics database and MIT-BIH normal sinus rhythm database. The experimental results demonstrate that the FCN outperforms conventional methods in sEMG reconstruction quality under a wide range of signal-to-noise ratio inputs.
Abstract:Multimodal learning has been proven to be an effective method to improve speech enhancement (SE) performance, especially in challenging situations such as low signal-to-noise ratios, speech noise, or unseen noise types. In previous studies, several types of auxiliary data have been used to construct multimodal SE systems, such as lip images, electropalatography, or electromagnetic midsagittal articulography. In this paper, we propose a novel EMGSE framework for multimodal SE, which integrates audio and facial electromyography (EMG) signals. Facial EMG is a biological signal containing articulatory movement information, which can be measured in a non-invasive way. Experimental results show that the proposed EMGSE system can achieve better performance than the audio-only SE system. The benefits of fusing EMG signals with acoustic signals for SE are notable under challenging circumstances. Furthermore, this study reveals that cheek EMG is sufficient for SE.