Abstract:Accelerated MRI reconstruction techniques aim to reduce examination time while maintaining high image fidelity, which is highly desirable in clinical settings for improving patient comfort and hospital efficiency. Existing deep learning methods typically reconstruct images from under-sampled data with traditional reconstruction approaches, but they still struggle to provide high-fidelity results. Diffusion models show great potential to improve fidelity of generated images in recent years. However, their inference process starting with a random Gaussian noise introduces instability into the results and usually requires thousands of sampling steps, resulting in sub-optimal reconstruction quality and low efficiency. To address these challenges, we propose Cycle-Consistent Bridge Diffusion Model (CBDM). CBDM employs two bridge diffusion models to construct a cycle-consistent diffusion process with a consistency loss, enhancing the fine-grained details of reconstructed images and reducing the number of diffusion steps. Moreover, CBDM incorporates a Contourlet Decomposition Embedding Module (CDEM) which captures multi-scale structural texture knowledge in images through frequency domain decomposition pyramids and directional filter banks to improve structural fidelity. Extensive experiments demonstrate the superiority of our model by higher reconstruction quality and fewer training iterations, achieving a new state of the art for accelerated MRI reconstruction in both fastMRI and IXI datasets.
Abstract:Multimodal MR image synthesis aims to generate missing modality image by fusing and mapping a few available MRI data. Most existing approaches typically adopt an image-to-image translation scheme. However, these methods often suffer from sub-optimal performance due to the spatial misalignment between different modalities while they are typically treated as input channels. Therefore, in this paper, we propose an Adaptive Group-wise Interaction Network (AGI-Net) that explores both inter-modality and intra-modality relationships for multimodal MR image synthesis. Specifically, groups are first pre-defined along the channel dimension and then we perform an adaptive rolling for the standard convolutional kernel to capture inter-modality spatial correspondences. At the same time, a cross-group attention module is introduced to fuse information across different channel groups, leading to better feature representation. We evaluated the effectiveness of our model on the publicly available IXI and BraTS2023 datasets, where the AGI-Net achieved state-of-the-art performance for multimodal MR image synthesis. Code will be released.
Abstract:Annotation ambiguity due to inherent data uncertainties such as blurred boundaries in medical scans and different observer expertise and preferences has become a major obstacle for training deep-learning based medical image segmentation models. To address it, the common practice is to gather multiple annotations from different experts, leading to the setting of multi-rater medical image segmentation. Existing works aim to either merge different annotations into the "groundtruth" that is often unattainable in numerous medical contexts, or generate diverse results, or produce personalized results corresponding to individual expert raters. Here, we bring up a more ambitious goal for multi-rater medical image segmentation, i.e., obtaining both diversified and personalized results. Specifically, we propose a two-stage framework named D-Persona (first Diversification and then Personalization). In Stage I, we exploit multiple given annotations to train a Probabilistic U-Net model, with a bound-constrained loss to improve the prediction diversity. In this way, a common latent space is constructed in Stage I, where different latent codes denote diversified expert opinions. Then, in Stage II, we design multiple attention-based projection heads to adaptively query the corresponding expert prompts from the shared latent space, and then perform the personalized medical image segmentation. We evaluated the proposed model on our in-house Nasopharyngeal Carcinoma dataset and the public lung nodule dataset (i.e., LIDC-IDRI). Extensive experiments demonstrated our D-Persona can provide diversified and personalized results at the same time, achieving new SOTA performance for multi-rater medical image segmentation. Our code will be released at https://github.com/ycwu1997/D-Persona.
Abstract:Annotation scarcity has become a major obstacle for training powerful deep-learning models for medical image segmentation, restricting their deployment in clinical scenarios. To address it, semi-supervised learning by exploiting abundant unlabeled data is highly desirable to boost the model training. However, most existing works still focus on limited medical tasks and underestimate the potential of learning across diverse tasks and multiple datasets. Therefore, in this paper, we introduce a \textbf{Ver}satile \textbf{Semi}-supervised framework (VerSemi) to point out a new perspective that integrates various tasks into a unified model with a broad label space, to exploit more unlabeled data for semi-supervised medical image segmentation. Specifically, we introduce a dynamic task-prompted design to segment various targets from different datasets. Next, this unified model is used to identify the foreground regions from all labeled data, to capture cross-dataset semantics. Particularly, we create a synthetic task with a cutmix strategy to augment foreground targets within the expanded label space. To effectively utilize unlabeled data, we introduce a consistency constraint. This involves aligning aggregated predictions from various tasks with those from the synthetic task, further guiding the model in accurately segmenting foreground regions during training. We evaluated our VerSemi model on four public benchmarking datasets. Extensive experiments demonstrated that VerSemi can consistently outperform the second-best method by a large margin (e.g., an average 2.69\% Dice gain on four datasets), setting new SOTA performance for semi-supervised medical image segmentation. The code will be released.
Abstract:New lesion segmentation is essential to estimate the disease progression and therapeutic effects during multiple sclerosis (MS) clinical treatments. However, the expensive data acquisition and expert annotation restrict the feasibility of applying large-scale deep learning models. Since single-time-point samples with all-lesion labels are relatively easy to collect, exploiting them to train deep models is highly desirable to improve new lesion segmentation. Therefore, we proposed a coaction segmentation (CoactSeg) framework to exploit the heterogeneous data (i.e., new-lesion annotated two-time-point data and all-lesion annotated single-time-point data) for new MS lesion segmentation. The CoactSeg model is designed as a unified model, with the same three inputs (the baseline, follow-up, and their longitudinal brain differences) and the same three outputs (the corresponding all-lesion and new-lesion predictions), no matter which type of heterogeneous data is being used. Moreover, a simple and effective relation regularization is proposed to ensure the longitudinal relations among the three outputs to improve the model learning. Extensive experiments demonstrate that utilizing the heterogeneous data and the proposed longitudinal relation constraint can significantly improve the performance for both new-lesion and all-lesion segmentation tasks. Meanwhile, we also introduce an in-house MS-23v1 dataset, including 38 Oceania single-time-point samples with all-lesion labels. Codes and the dataset are released at https://github.com/ycwu1997/CoactSeg.
Abstract:Semi-supervised learning (SSL) has attracted much attention since it reduces the expensive costs of collecting adequate well-labeled training data, especially for deep learning methods. However, traditional SSL is built upon an assumption that labeled and unlabeled data should be from the same distribution e.g., classes and domains. However, in practical scenarios, unlabeled data would be from unseen classes or unseen domains, and it is still challenging to exploit them by existing SSL methods. Therefore, in this paper, we proposed a unified framework to leverage these unseen unlabeled data for open-scenario semi-supervised medical image classification. We first design a novel scoring mechanism, called dual-path outliers estimation, to identify samples from unseen classes. Meanwhile, to extract unseen-domain samples, we then apply an effective variational autoencoder (VAE) pre-training. After that, we conduct domain adaptation to fully exploit the value of the detected unseen-domain samples to boost semi-supervised training. We evaluated our proposed framework on dermatology and ophthalmology tasks. Extensive experiments demonstrate our model can achieve superior classification performance in various medical SSL scenarios.
Abstract:Weakly-supervised point cloud segmentation with extremely limited labels is highly desirable to alleviate the expensive costs of collecting densely annotated 3D points. This paper explores to apply the consistency regularization that is commonly used in weakly-supervised learning, for its point cloud counterpart with multiple data-specific augmentations, which has not been well studied. We observe that the straightforward way of applying consistency constraints to weakly-supervised point cloud segmentation has two major limitations: noisy pseudo labels due to the conventional confidence-based selection and insufficient consistency constraints due to discarding unreliable pseudo labels. Therefore, we propose a novel Reliability-Adaptive Consistency Network (RAC-Net) to use both prediction confidence and model uncertainty to measure the reliability of pseudo labels and apply consistency training on all unlabeled points while with different consistency constraints for different points based on the reliability of corresponding pseudo labels. Experimental results on the S3DIS and ScanNet-v2 benchmark datasets show that our model achieves superior performance in weakly-supervised point cloud segmentation. The code will be released.
Abstract:We present a robust, privacy-preserving visual localization algorithm using event cameras. While event cameras can potentially make robust localization due to high dynamic range and small motion blur, the sensors exhibit large domain gaps making it difficult to directly apply conventional image-based localization algorithms. To mitigate the gap, we propose applying event-to-image conversion prior to localization which leads to stable localization. In the privacy perspective, event cameras capture only a fraction of visual information compared to normal cameras, and thus can naturally hide sensitive visual details. To further enhance the privacy protection in our event-based pipeline, we introduce privacy protection at two levels, namely sensor and network level. Sensor level protection aims at hiding facial details with lightweight filtering while network level protection targets hiding the entire user's view in private scene applications using a novel neural network inference pipeline. Both levels of protection involve light-weight computation and incur only a small performance loss. We thus project our method to serve as a building block for practical location-based services using event cameras. The code and dataset will be made public through the following link: https://github.com/82magnolia/event_localization.
Abstract:Flash illumination is widely used in imaging under low-light environments. However, illumination intensity falls off with propagation distance quadratically, which poses significant challenges for flash imaging at a long distance. We propose a new flash technique, named ``patterned flash'', for flash imaging at a long distance. Patterned flash concentrates optical power into a dot array. Compared with the conventional uniform flash where the signal is overwhelmed by the noise everywhere, patterned flash provides stronger signals at sparsely distributed points across the field of view to ensure the signals at those points stand out from the sensor noise. This enables post-processing to resolve important objects and details. Additionally, the patterned flash projects texture onto the scene, which can be treated as a structured light system for depth perception. Given the novel system, we develop a joint image reconstruction and depth estimation algorithm with a convolutional neural network. We build a hardware prototype and test the proposed flash technique on various scenes. The experimental results demonstrate that our patterned flash has significantly better performance at long distances in low-light environments.
Abstract:Weakly supervised point cloud segmentation, i.e. semantically segmenting a point cloud with only a few labeled points in the whole 3D scene, is highly desirable due to the heavy burden of collecting abundant dense annotations for the model training. However, existing methods remain challenging to accurately segment 3D point clouds since limited annotated data may lead to insufficient guidance for label propagation to unlabeled data. Considering the smoothness-based methods have achieved promising progress, in this paper, we advocate applying the consistency constraint under various perturbations to effectively regularize unlabeled 3D points. Specifically, we propose a novel DAT (\textbf{D}ual \textbf{A}daptive \textbf{T}ransformations) model for weakly supervised point cloud segmentation, where the dual adaptive transformations are performed via an adversarial strategy at both point-level and region-level, aiming at enforcing the local and structural smoothness constraints on 3D point clouds. We evaluate our proposed DAT model with two popular backbones on the large-scale S3DIS and ScanNet-V2 datasets. Extensive experiments demonstrate that our model can effectively leverage the unlabeled 3D points and achieve significant performance gains on both datasets, setting new state-of-the-art performance for weakly supervised point cloud segmentation.