Abstract:Visible watermark removal which involves watermark cleaning and background content restoration is pivotal to evaluate the resilience of watermarks. Existing deep neural network (DNN)-based models still struggle with large-area watermarks and are overly dependent on the quality of watermark mask prediction. To overcome these challenges, we introduce a novel feature adapting framework that leverages the representation modeling capacity of a pre-trained image inpainting model. Our approach bridges the knowledge gap between image inpainting and watermark removal by fusing information of the residual background content beneath watermarks into the inpainting backbone model. We establish a dual-branch system to capture and embed features from the residual background content, which are merged into intermediate features of the inpainting backbone model via gated feature fusion modules. Moreover, for relieving the dependence on high-quality watermark masks, we introduce a new training paradigm by utilizing coarse watermark masks to guide the inference process. This contributes to a visible image removal model which is insensitive to the quality of watermark mask during testing. Extensive experiments on both a large-scale synthesized dataset and a real-world dataset demonstrate that our approach significantly outperforms existing state-of-the-art methods. The source code is available in the supplementary materials.
Abstract:Point-based interactive image segmentation can ease the burden of mask annotation in applications such as semantic segmentation and image editing. However, fully extracting the target mask with limited user inputs remains challenging. We introduce a novel method, Variance-Insensitive and Target-Preserving Mask Refinement to enhance segmentation quality with fewer user inputs. Regarding the last segmentation result as the initial mask, an iterative refinement process is commonly employed to continually enhance the initial mask. Nevertheless, conventional techniques suffer from sensitivity to the variance in the initial mask. To circumvent this problem, our proposed method incorporates a mask matching algorithm for ensuring consistent inferences from different types of initial masks. We also introduce a target-aware zooming algorithm to preserve object information during downsampling, balancing efficiency and accuracy. Experiments on GrabCut, Berkeley, SBD, and DAVIS datasets demonstrate our method's state-of-the-art performance in interactive image segmentation.
Abstract:We revisit the problem of designing scalable protocols for private statistics and private federated learning when each device holds its private data. Our first contribution is to propose a simple primitive that allows for efficient implementation of several commonly used algorithms, and allows for privacy accounting that is close to that in the central setting without requiring the strong trust assumptions it entails. Second, we propose a system architecture that implements this primitive and perform a security analysis of the proposed system.
Abstract:In this work, we study practical heuristics to improve the performance of prefix-tree based algorithms for differentially private heavy hitter detection. Our model assumes each user has multiple data points and the goal is to learn as many of the most frequent data points as possible across all users' data with aggregate and local differential privacy. We propose an adaptive hyperparameter tuning algorithm that improves the performance of the algorithm while satisfying computational, communication and privacy constraints. We explore the impact of different data-selection schemes as well as the impact of introducing deny lists during multiple runs of the algorithm. We test these improvements using extensive experimentation on the Reddit dataset~\cite{caldas2018leaf} on the task of learning the most frequent words.
Abstract:A cooperative positioning flamework of human and robots based on visible light communication (VLC) is proposed. Based on the experiment system, we demonstrated it has high accuracy and real-time performance.