Abstract:Node importance estimation, a classical problem in network analysis, underpins various web applications. Previous methods either exploit intrinsic topological characteristics, e.g., graph centrality, or leverage additional information, e.g., data heterogeneity, for node feature enhancement. However, these methods follow the supervised learning setting, overlooking the fact that ground-truth node-importance data are usually partially labeled in practice. In this work, we propose the first semi-supervised node importance estimation framework, i.e., EASING, to improve learning quality for unlabeled data in heterogeneous graphs. Different from previous approaches, EASING explicitly captures uncertainty to reflect the confidence of model predictions. To jointly estimate the importance values and uncertainties, EASING incorporates DJE, a deep encoder-decoder neural architecture. DJE introduces distribution modeling for graph nodes, where the distribution representations derive both importance and uncertainty estimates. Additionally, DJE facilitates effective pseudo-label generation for the unlabeled data to enrich the training samples. Based on labeled and pseudo-labeled data, EASING develops effective semi-supervised heteroscedastic learning with varying node uncertainty regularization. Extensive experiments on three real-world datasets highlight the superior performance of EASING compared to competing methods. Codes are available via https://github.com/yankai-chen/EASING.
Abstract:Cardinality estimation is a fundamental functionality in database systems. Most existing cardinality estimators focus on handling predicates over numeric or categorical data. They have largely omitted an important data type, set-valued data, which frequently occur in contemporary applications such as information retrieval and recommender systems. The few existing estimators for such data either favor high-frequency elements or rely on a partial independence assumption, which limits their practical applicability. We propose ACE, an Attention-based Cardinality Estimator for estimating the cardinality of queries over set-valued data. We first design a distillation-based data encoder to condense the dataset into a compact matrix. We then design an attention-based query analyzer to capture correlations among query elements. To handle variable-sized queries, a pooling module is introduced, followed by a regression model (MLP) to generate final cardinality estimates. We evaluate ACE on three datasets with varying query element distributions, demonstrating that ACE outperforms the state-of-the-art competitors in terms of both accuracy and efficiency.
Abstract:Graph-based Retrieval-Augmented Generation (RAG) has proven effective in integrating external knowledge into large language models (LLMs), improving their factual accuracy, adaptability, interpretability, and trustworthiness. A number of graph-based RAG methods have been proposed in the literature. However, these methods have not been systematically and comprehensively compared under the same experimental settings. In this paper, we first summarize a unified framework to incorporate all graph-based RAG methods from a high-level perspective. We then extensively compare representative graph-based RAG methods over a range of questing-answering (QA) datasets -- from specific questions to abstract questions -- and examine the effectiveness of all methods, providing a thorough analysis of graph-based RAG approaches. As a byproduct of our experimental analysis, we are also able to identify new variants of the graph-based RAG methods over specific QA and abstract QA tasks respectively, by combining existing techniques, which outperform the state-of-the-art methods. Finally, based on these findings, we offer promising research opportunities. We believe that a deeper understanding of the behavior of existing methods can provide new valuable insights for future research.
Abstract:Searching on bipartite graphs serves as a fundamental task for various real-world applications, such as recommendation systems, database retrieval, and document querying. Conventional approaches rely on similarity matching in continuous Euclidean space of vectorized node embeddings. To handle intensive similarity computation efficiently, hashing techniques for graph-structured data have emerged as a prominent research direction. However, despite the retrieval efficiency in Hamming space, previous studies have encountered catastrophic performance decay. To address this challenge, we investigate the problem of hashing with Graph Convolutional Network for effective Top-N search. Our findings indicate the learning effectiveness of incorporating hashing techniques within the exploration of bipartite graph reception fields, as opposed to simply treating hashing as post-processing to output embeddings. To further enhance the model performance, we advance upon these findings and propose Bipartite Graph Contrastive Hashing (BGCH+). BGCH+ introduces a novel dual augmentation approach to both intermediate information and hash code outputs in the latent feature spaces, thereby producing more expressive and robust hash codes within a dual self-supervised learning paradigm. Comprehensive empirical analyses on six real-world benchmarks validate the effectiveness of our dual feature contrastive learning in boosting the performance of BGCH+ compared to existing approaches.
Abstract:Node importance estimation problem has been studied conventionally with homogeneous network topology analysis. To deal with network heterogeneity, a few recent methods employ graph neural models to automatically learn diverse sources of information. However, the major concern revolves around that their full adaptive learning process may lead to insufficient information exploration, thereby formulating the problem as the isolated node value prediction with underperformance and less interpretability. In this work, we propose a novel learning framework: SKES. Different from previous automatic learning designs, SKES exploits heterogeneous structural knowledge to enrich the informativeness of node representations. Based on a sufficiently uninformative reference, SKES estimates the importance value for any input node, by quantifying its disparity against the reference. This establishes an interpretable node importance computation paradigm. Furthermore, SKES dives deep into the understanding that "nodes with similar characteristics are prone to have similar importance values" whilst guaranteeing that such informativeness disparity between any different nodes is orderly reflected by the embedding distance of their associated latent features. Extensive experiments on three widely-evaluated benchmarks demonstrate the performance superiority of SKES over several recent competing methods.
Abstract:Visible watermarks, while instrumental in protecting image copyrights, frequently distort the underlying content, complicating tasks like scene interpretation and image editing. Visible watermark removal aims to eliminate the interference of watermarks and restore the background content. However, existing methods often implement watermark component removal and background restoration tasks within a singular branch, leading to residual watermarks in the predictions and ignoring cases where watermarks heavily obscure the background. To address these limitations, this study introduces the Removing Interference and Recovering Content Imaginatively (RIRCI) framework. RIRCI embodies a two-stage approach: the initial phase centers on discerning and segregating the watermark component, while the subsequent phase focuses on background content restoration. To achieve meticulous background restoration, our proposed model employs a dual-path network capable of fully exploring the intrinsic background information beneath semi-transparent watermarks and peripheral contextual information from unaffected regions. Moreover, a Global and Local Context Interaction module is built upon multi-layer perceptrons and bidirectional feature transformation for comprehensive representation modeling in the background restoration phase. The efficacy of our approach is empirically validated across two large-scale datasets, and our findings reveal a marked enhancement over existing watermark removal techniques.
Abstract:Searching on bipartite graphs is basal and versatile to many real-world Web applications, e.g., online recommendation, database retrieval, and query-document searching. Given a query node, the conventional approaches rely on the similarity matching with the vectorized node embeddings in the continuous Euclidean space. To efficiently manage intensive similarity computation, developing hashing techniques for graph structured data has recently become an emerging research direction. Despite the retrieval efficiency in Hamming space, prior work is however confronted with catastrophic performance decay. In this work, we investigate the problem of hashing with Graph Convolutional Network on bipartite graphs for effective Top-N search. We propose an end-to-end Bipartite Graph Convolutional Hashing approach, namely BGCH, which consists of three novel and effective modules: (1) adaptive graph convolutional hashing, (2) latent feature dispersion, and (3) Fourier serialized gradient estimation. Specifically, the former two modules achieve the substantial retention of the structural information against the inevitable information loss in hash encoding; the last module develops Fourier Series decomposition to the hashing function in the frequency domain mainly for more accurate gradient estimation. The extensive experiments on six real-world datasets not only show the performance superiority over the competing hashing-based counterparts, but also demonstrate the effectiveness of all proposed model components contained therein.
Abstract:Spatial objects often come with textual information, such as Points of Interest (POIs) with their descriptions, which are referred to as geo-textual data. To retrieve such data, spatial keyword queries that take into account both spatial proximity and textual relevance have been extensively studied. Existing indexes designed for spatial keyword queries are mostly built based on the geo-textual data without considering the distribution of queries already received. However, previous studies have shown that utilizing the known query distribution can improve the index structure for future query processing. In this paper, we propose WISK, a learned index for spatial keyword queries, which self-adapts for optimizing querying costs given a query workload. One key challenge is how to utilize both structured spatial attributes and unstructured textual information during learning the index. We first divide the data objects into partitions, aiming to minimize the processing costs of the given query workload. We prove the NP-hardness of the partitioning problem and propose a machine learning model to find the optimal partitions. Then, to achieve more pruning power, we build a hierarchical structure based on the generated partitions in a bottom-up manner with a reinforcement learning-based approach. We conduct extensive experiments on real-world datasets and query workloads with various distributions, and the results show that WISK outperforms all competitors, achieving up to 8x speedup in querying time with comparable storage overhead.
Abstract:Heterogeneous graphs, which contain nodes and edges of multiple types, are prevalent in various domains, including bibliographic networks, social media, and knowledge graphs. As a fundamental task in analyzing heterogeneous graphs, relevance measure aims to calculate the relevance between two objects of different types, which has been used in many applications such as web search, recommendation, and community detection. Most of existing relevance measures focus on homogeneous networks where objects are of the same type, and a few measures are developed for heterogeneous graphs, but they often need the pre-defined meta-path. Defining meaningful meta-paths requires much domain knowledge, which largely limits their applications, especially on schema-rich heterogeneous graphs like knowledge graphs. Recently, the Graph Neural Network (GNN) has been widely applied in many graph mining tasks, but it has not been applied for measuring relevance yet. To address the aforementioned problems, we propose a novel GNN-based relevance measure, namely GSim. Specifically, we first theoretically analyze and show that GNN is effective for measuring the relevance of nodes in the graph. We then propose a context path-based graph neural network (CP-GNN) to automatically leverage the semantics in heterogeneous graphs. Moreover, we exploit CP-GNN to support relevance measures between two objects of any type. Extensive experiments demonstrate that GSim outperforms existing measures.
Abstract:Community detection, aiming to group the graph nodes into clusters with dense inner-connection, is a fundamental graph mining task. Recently, it has been studied on the heterogeneous graph, which contains multiple types of nodes and edges, posing great challenges for modeling the high-order relationship between nodes. With the surge of graph embedding mechanism, it has also been adopted to community detection. A remarkable group of works use the meta-path to capture the high-order relationship between nodes and embed them into nodes' embedding to facilitate community detection. However, defining meaningful meta-paths requires much domain knowledge, which largely limits their applications, especially on schema-rich heterogeneous graphs like knowledge graphs. To alleviate this issue, in this paper, we propose to exploit the context path to capture the high-order relationship between nodes, and build a Context Path-based Graph Neural Network (CP-GNN) model. It recursively embeds the high-order relationship between nodes into the node embedding with attention mechanisms to discriminate the importance of different relationships. By maximizing the expectation of the co-occurrence of nodes connected by context paths, the model can learn the nodes' embeddings that both well preserve the high-order relationship between nodes and are helpful for community detection. Extensive experimental results on four real-world datasets show that CP-GNN outperforms the state-of-the-art community detection methods.