Abstract:As the scale of vision models continues to grow, Visual Prompt Tuning (VPT) has emerged as a parameter-efficient transfer learning technique, noted for its superior performance compared to full fine-tuning. However, indiscriminately applying prompts to every layer without considering their inherent correlations, can cause significant disturbances, leading to suboptimal transferability. Additionally, VPT disrupts the original self-attention structure, affecting the aggregation of visual features, and lacks a mechanism for explicitly mining discriminative visual features, which are crucial for classification. To address these issues, we propose a Semantic Hierarchical Prompt (SHIP) fine-tuning strategy. We adaptively construct semantic hierarchies and use semantic-independent and semantic-shared prompts to learn hierarchical representations. We also integrate attribute prompts and a prompt matching loss to enhance feature discrimination and employ decoupled attention for robustness and reduced inference costs. SHIP significantly improves performance, achieving a 4.9% gain in accuracy over VPT with a ViT-B/16 backbone on VTAB-1k tasks. Our code is available at https://github.com/haoweiz23/SHIP.
Abstract:Deep neural networks have been proven to be vulnerable to adversarial examples and various methods have been proposed to defend against adversarial attacks for natural language processing tasks. However, previous defense methods have limitations in maintaining effective defense while ensuring the performance of the original task. In this paper, we propose a malicious perturbation based adversarial training method (MPAT) for building robust deep neural networks against textual adversarial attacks. Specifically, we construct a multi-level malicious example generation strategy to generate adversarial examples with malicious perturbations, which are used instead of original inputs for model training. Additionally, we employ a novel training objective function to ensure achieving the defense goal without compromising the performance on the original task. We conduct comprehensive experiments to evaluate our defense method by attacking five victim models on three benchmark datasets. The result demonstrates that our method is more effective against malicious adversarial attacks compared with previous defense methods while maintaining or further improving the performance on the original task.
Abstract:Due to the remarkable capabilities of powerful Large Language Models (LLMs) in effectively following instructions, there has been a growing number of assistants in the community to assist humans. Recently, significant progress has been made in the development of Vision Language Models (VLMs), expanding the capabilities of LLMs and enabling them to execute more diverse instructions. However, it is foreseeable that models will likely need to handle tasks involving additional modalities such as speech, video, and others. This poses a particularly prominent challenge of dealing with the complexity of mixed modalities. To address this, we introduce a novel architecture called PILL: Plug Into LLM with adapter expert and attention gate to better decouple these complex modalities and leverage efficient fine-tuning. We introduce two modules: Firstly, utilizing Mixture-of-Modality-Adapter-Expert to independently handle different modalities, enabling better adaptation to downstream tasks while preserving the expressive capability of the original model. Secondly, by introducing Modality-Attention-Gating, which enables adaptive control of the contribution of modality tokens to the overall representation. In addition, we have made improvements to the Adapter to enhance its learning and expressive capabilities. Experimental results demonstrate that our approach exhibits competitive performance compared to other mainstream methods for modality fusion. For researchers interested in our work, we provide free access to the code and models at https://github.com/DsaltYfish/PILL.
Abstract:Blind super-resolution (BSR) methods based on high-resolution (HR) reconstruction codebooks have achieved promising results in recent years. However, we find that a codebook based on HR reconstruction may not effectively capture the complex correlations between low-resolution (LR) and HR images. In detail, multiple HR images may produce similar LR versions due to complex blind degradations, causing the HR-dependent only codebooks having limited texture diversity when faced with confusing LR inputs. To alleviate this problem, we propose the Rich Texture-aware Codebook-based Network (RTCNet), which consists of the Degradation-robust Texture Prior Module (DTPM) and the Patch-aware Texture Prior Module (PTPM). DTPM effectively mines the cross-resolution correlation of textures between LR and HR images by exploiting the cross-resolution correspondence of textures. PTPM uses patch-wise semantic pre-training to correct the misperception of texture similarity in the high-level semantic regularization. By taking advantage of this, RTCNet effectively gets rid of the misalignment of confusing textures between HR and LR in the BSR scenarios. Experiments show that RTCNet outperforms state-of-the-art methods on various benchmarks by up to 0.16 ~ 0.46dB.
Abstract:Reliable pseudo-labels from unlabeled data play a key role in semi-supervised object detection (SSOD). However, the state-of-the-art SSOD methods all rely on pseudo-labels with high confidence, which ignore valuable pseudo-labels with lower confidence. Additionally, the insufficient excavation for unlabeled data results in an excessively low recall rate thus hurting the network training. In this paper, we propose a novel Low-confidence Samples Mining (LSM) method to utilize low-confidence pseudo-labels efficiently. Specifically, we develop an additional pseudo information mining (PIM) branch on account of low-resolution feature maps to extract reliable large-area instances, the IoUs of which are higher than small-area ones. Owing to the complementary predictions between PIM and the main branch, we further design self-distillation (SD) to compensate for both in a mutually-learning manner. Meanwhile, the extensibility of the above approaches enables our LSM to apply to Faster-RCNN and Deformable-DETR respectively. On the MS-COCO benchmark, our method achieves 3.54% mAP improvement over state-of-the-art methods under 5% labeling ratios.
Abstract:This study delves into semi-supervised object detection (SSOD) to improve detector performance with additional unlabeled data. State-of-the-art SSOD performance has been achieved recently by self-training, in which training supervision consists of ground truths and pseudo-labels. In current studies, we observe that class imbalance in SSOD severely impedes the effectiveness of self-training. To address the class imbalance, we propose adaptive class-rebalancing self-training (ACRST) with a novel memory module called CropBank. ACRST adaptively rebalances the training data with foreground instances extracted from the CropBank, thereby alleviating the class imbalance. Owing to the high complexity of detection tasks, we observe that both self-training and data-rebalancing suffer from noisy pseudo-labels in SSOD. Therefore, we propose a novel two-stage filtering algorithm to generate accurate pseudo-labels. Our method achieves satisfactory improvements on MS-COCO and VOC benchmarks. When using only 1\% labeled data in MS-COCO, our method achieves 17.02 mAP improvement over supervised baselines, and 5.32 mAP improvement compared with state-of-the-art methods.