Abstract:Due to the rising awareness of privacy protection and the voluminous scale of speech data, it is becoming infeasible for Automatic Speech Recognition (ASR) system developers to train the acoustic model with complete data as before. For example, the data may be owned by different curators, and it is not allowed to share with others. In this paper, we propose a novel paradigm to solve salient problems plaguing the ASR field. In the first stage, multiple acoustic models are trained based upon different subsets of the complete speech data, while in the second phase, two novel algorithms are utilized to generate a high-quality acoustic model based upon those trained on data subsets. We first propose the Genetic Merge Algorithm (GMA), which is a highly specialized algorithm for optimizing acoustic models but suffers from low efficiency. We further propose the SGD-Based Optimizational Merge Algorithm (SOMA), which effectively alleviates the efficiency bottleneck of GMA and maintains superior model accuracy. Extensive experiments on public data show that the proposed methods can significantly outperform the state-of-the-art. Furthermore, we introduce Shapley Value to estimate the contribution score of the trained models, which is useful for evaluating the effectiveness of the data and providing fair incentives to their curators.
Abstract:Reliable responses of service chatbots are often achieved by employing retrieval-based methods that restrict answers to a knowledge base comprising predefined question-answer pairs (QA pairs). To accommodate potential variations in how a customer's query may be expressed, it emerges as the favored solution to augment these QA pairs with similar questions that are possibly diverse while remaining semantic consistency. This augmentation task is known as Similar Question Generation (SQG). Traditional methods that heavily rely on human efforts or rule-based techniques suffer from limited diversity or significant semantic deviation from the source question, only capable of producing a finite number of useful questions. To address these limitations, we propose an SQG approach based on Large Language Models (LLMs), capable of producing a substantial number of diverse questions while maintaining semantic consistency to the source QA pair. This is achieved by leveraging LLMs' natural language understanding capability through fine-tuning with specially designed prompts. The experiments conducted on a real customer-service dataset demonstrate that our method surpasses baseline methods by a significant margin in terms of semantic diversity. Human evaluation further confirms that integrating the answer that reflects the customer's intention is crucial for increasing the number of generated questions that meet business requirements.
Abstract:With the growing importance of customer service in contemporary business, recognizing the intents behind service dialogues has become essential for the strategic success of enterprises. However, the nature of dialogue data varies significantly across different scenarios, and implementing an intent parser for a specific domain often involves tedious feature engineering and a heavy workload of data labeling. In this paper, we propose a novel Neural-Bayesian Program Learning model named Dialogue-Intent Parser (DI-Parser), which specializes in intent parsing under data-hungry settings and offers promising performance improvements. DI-Parser effectively utilizes data from multiple sources in a "Learning to Learn" manner and harnesses the "wisdom of the crowd" through few-shot learning capabilities on human-annotated datasets. Experimental results demonstrate that DI-Parser outperforms state-of-the-art deep learning models and offers practical advantages for industrial-scale applications.
Abstract:Understanding the meaning of infant cries is a significant challenge for young parents in caring for their newborns. The presence of background noise and the lack of labeled data present practical challenges in developing systems that can detect crying and analyze its underlying reasons. In this paper, we present a novel data-driven framework, "InfantCryNet," for accomplishing these tasks. To address the issue of data scarcity, we employ pre-trained audio models to incorporate prior knowledge into our model. We propose the use of statistical pooling and multi-head attention pooling techniques to extract features more effectively. Additionally, knowledge distillation and model quantization are applied to enhance model efficiency and reduce the model size, better supporting industrial deployment in mobile devices. Experiments on real-life datasets demonstrate the superior performance of the proposed framework, outperforming state-of-the-art baselines by 4.4% in classification accuracy. The model compression effectively reduces the model size by 7% without compromising performance and by up to 28% with only an 8% decrease in accuracy, offering practical insights for model selection and system design.
Abstract:Food classification is the foundation for developing food vision tasks and plays a key role in the burgeoning field of computational nutrition. Due to the complexity of food requiring fine-grained classification, recent academic research mainly modifies Convolutional Neural Networks (CNNs) and/or Vision Transformers (ViTs) to perform food category classification. However, to learn fine-grained features, the CNN backbone needs additional structural design, whereas ViT, containing the self-attention module, has increased computational complexity. In recent months, a new Sequence State Space (S4) model, through a Selection mechanism and computation with a Scan (S6), colloquially termed Mamba, has demonstrated superior performance and computation efficiency compared to the Transformer architecture. The VMamba model, which incorporates the Mamba mechanism into image tasks (such as classification), currently establishes the state-of-the-art (SOTA) on the ImageNet dataset. In this research, we introduce an academically underestimated food dataset CNFOOD-241, and pioneer the integration of a residual learning framework within the VMamba model to concurrently harness both global and local state features inherent in the original VMamba architectural design. The research results show that VMamba surpasses current SOTA models in fine-grained and food classification. The proposed Res-VMamba further improves the classification accuracy to 79.54\% without pretrained weight. Our findings elucidate that our proposed methodology establishes a new benchmark for SOTA performance in food recognition on the CNFOOD-241 dataset. The code can be obtained on GitHub: https://github.com/ChiShengChen/ResVMamba.
Abstract:The springing up of Large Language Models (LLMs) has shifted the community from single-task-orientated natural language processing (NLP) research to a holistic end-to-end multi-task learning paradigm. Along this line of research endeavors in the area, LLM-based prompting methods have attracted much attention, partially due to the technological advantages brought by prompt engineering (PE) as well as the underlying NLP principles disclosed by various prompting methods. Traditional supervised learning usually requires training a model based on labeled data and then making predictions. In contrast, PE methods directly use the powerful capabilities of existing LLMs (i.e., GPT-3 and GPT-4) via composing appropriate prompts, especially under few-shot or zero-shot scenarios. Facing the abundance of studies related to the prompting and the ever-evolving nature of this field, this article aims to (i) illustrate a novel perspective to review existing PE methods, within the well-established communication theory framework; (ii) facilitate a better/deeper understanding of developing trends of existing PE methods used in four typical tasks; (iii) shed light on promising research directions for future PE methods.
Abstract:Face clustering can provide pseudo-labels to the massive unlabeled face data and improve the performance of different face recognition models. The existing clustering methods generally aggregate the features within subgraphs that are often implemented based on a uniform threshold or a learned cutoff position. This may reduce the recall of subgraphs and hence degrade the clustering performance. This work proposed an efficient neighborhood-aware subgraph adjustment method that can significantly reduce the noise and improve the recall of the subgraphs, and hence can drive the distant nodes to converge towards the same centers. More specifically, the proposed method consists of two components, i.e. face embeddings enhancement using the embeddings from neighbors, and enclosed subgraph construction of node pairs for structural information extraction. The embeddings are combined to predict the linkage probabilities for all node pairs to replace the cosine similarities to produce new subgraphs that can be further used for aggregation of GCNs or other clustering methods. The proposed method is validated through extensive experiments against a range of clustering solutions using three benchmark datasets and numerical results confirm that it outperforms the SOTA solutions in terms of generalization capability.
Abstract:Speech-based inputs have been gaining significant momentum with the popularity of smartphones and tablets in our daily lives, since voice is the most easiest and efficient way for human-computer interaction. This paper works towards designing more effective speech-based interfaces to query the structured data in relational databases. We first identify a new task named Speech-to-SQL, which aims to understand the information conveyed by human speech and directly translate it into structured query language (SQL) statements. A naive solution to this problem can work in a cascaded manner, that is, an automatic speech recognition (ASR) component followed by a text-to-SQL component. However, it requires a high-quality ASR system and also suffers from the error compounding problem between the two components, resulting in limited performance. To handle these challenges, we further propose a novel end-to-end neural architecture named SpeechSQLNet to directly translate human speech into SQL queries without an external ASR step. SpeechSQLNet has the advantage of making full use of the rich linguistic information presented in speech. To the best of our knowledge, this is the first attempt to directly synthesize SQL based on arbitrary natural language questions, rather than a natural language-based version of SQL or its variants with a limited SQL grammar. To validate the effectiveness of the proposed problem and model, we further construct a dataset named SpeechQL, by piggybacking the widely-used text-to-SQL datasets. Extensive experimental evaluations on this dataset show that SpeechSQLNet can directly synthesize high-quality SQL queries from human speech, outperforming various competitive counterparts as well as the cascaded methods in terms of exact match accuracies.
Abstract:Modern Automatic Speech Recognition (ASR) systems primarily rely on scores from an Acoustic Model (AM) and a Language Model (LM) to rescore the N-best lists. With the abundance of recent natural language processing advances, the information utilized by current ASR for evaluating the linguistic and semantic legitimacy of the N-best hypotheses is rather limited. In this paper, we propose a novel Learning-to-Rescore (L2RS) mechanism, which is specialized for utilizing a wide range of textual information from the state-of-the-art NLP models and automatically deciding their weights to rescore the N-best lists for ASR systems. Specifically, we incorporate features including BERT sentence embedding, topic vector, and perplexity scores produced by n-gram LM, topic modeling LM, BERT LM and RNNLM to train a rescoring model. We conduct extensive experiments based on a public dataset, and experimental results show that L2RS outperforms not only traditional rescoring methods but also its deep neural network counterparts by a substantial improvement of 20.67% in terms of NDCG@10. L2RS paves the way for developing more effective rescoring models for ASR.
Abstract:In open-domain dialogue systems, generative approaches have attracted much attention for response generation. However, existing methods are heavily plagued by generating safe responses and unnatural responses. To alleviate these two problems, we propose a novel framework named Dual Adversarial Learning (DAL) for high-quality response generation. DAL is the first work to innovatively utilizes the duality between query generation and response generation to avoid safe responses and increase the diversity of the generated responses. Additionally, DAL uses adversarial learning to mimic human judges and guides the system to generate natural responses. Experimental results demonstrate that DAL effectively improves both diversity and overall quality of the generated responses. DAL outperforms the state-of-the-art methods regarding automatic metrics and human evaluations.