Abstract:Recent advances in Retrieval-Augmented Generation (RAG) have shifted from simple vector similarity to structure-aware approaches like HippoRAG, which leverage Knowledge Graphs (KGs) and Personalized PageRank (PPR) to capture multi-hop dependencies. However, these methods suffer from a "Static Graph Fallacy": they rely on fixed transition probabilities determined during indexing. This rigidity ignores the query-dependent nature of edge relevance, causing semantic drift where random walks are diverted into high-degree "hub" nodes before reaching critical downstream evidence. Consequently, models often achieve high partial recall but fail to retrieve the complete evidence chain required for multi-hop queries. To address this, we propose CatRAG, Context-Aware Traversal for robust RAG, a framework that builds on the HippoRAG 2 architecture and transforms the static KG into a query-adaptive navigation structure. We introduce a multi-faceted framework to steer the random walk: (1) Symbolic Anchoring, which injects weak entity constraints to regularize the random walk; (2) Query-Aware Dynamic Edge Weighting, which dynamically modulates graph structure, to prune irrelevant paths while amplifying those aligned with the query's intent; and (3) Key-Fact Passage Weight Enhancement, a cost-efficient bias that structurally anchors the random walk to likely evidence. Experiments across four multi-hop benchmarks demonstrate that CatRAG consistently outperforms state of the art baselines. Our analysis reveals that while standard Recall metrics show modest gains, CatRAG achieves substantial improvements in reasoning completeness, the capacity to recover the entire evidence path without gaps. These results reveal that our approach effectively bridges the gap between retrieving partial context and enabling fully grounded reasoning. Resources are available at https://github.com/kwunhang/CatRAG.
Abstract:Graph-based Retrieval-Augmented Generation (Graph-RAG) enhances large language models (LLMs) by structuring retrieval over an external corpus. However, existing approaches typically assume a static corpus, requiring expensive full-graph reconstruction whenever new documents arrive, limiting their scalability in dynamic, evolving environments. To address these limitations, we introduce EraRAG, a novel multi-layered Graph-RAG framework that supports efficient and scalable dynamic updates. Our method leverages hyperplane-based Locality-Sensitive Hashing (LSH) to partition and organize the original corpus into hierarchical graph structures, enabling efficient and localized insertions of new data without disrupting the existing topology. The design eliminates the need for retraining or costly recomputation while preserving high retrieval accuracy and low latency. Experiments on large-scale benchmarks demonstrate that EraRag achieves up to an order of magnitude reduction in update time and token consumption compared to existing Graph-RAG systems, while providing superior accuracy performance. This work offers a practical path forward for RAG systems that must operate over continually growing corpora, bridging the gap between retrieval efficiency and adaptability. Our code and data are available at https://github.com/EverM0re/EraRAG-Official.
Abstract:Graph-based Retrieval-Augmented Generation (RAG) has proven effective in integrating external knowledge into large language models (LLMs), improving their factual accuracy, adaptability, interpretability, and trustworthiness. A number of graph-based RAG methods have been proposed in the literature. However, these methods have not been systematically and comprehensively compared under the same experimental settings. In this paper, we first summarize a unified framework to incorporate all graph-based RAG methods from a high-level perspective. We then extensively compare representative graph-based RAG methods over a range of questing-answering (QA) datasets -- from specific questions to abstract questions -- and examine the effectiveness of all methods, providing a thorough analysis of graph-based RAG approaches. As a byproduct of our experimental analysis, we are also able to identify new variants of the graph-based RAG methods over specific QA and abstract QA tasks respectively, by combining existing techniques, which outperform the state-of-the-art methods. Finally, based on these findings, we offer promising research opportunities. We believe that a deeper understanding of the behavior of existing methods can provide new valuable insights for future research.