Abstract:Training high-quality deep models necessitates vast amounts of data, resulting in overwhelming computational and memory demands. Recently, data pruning, distillation, and coreset selection have been developed to streamline data volume by retaining, synthesizing, or selecting a small yet informative subset from the full set. Among these methods, data pruning incurs the least additional training cost and offers the most practical acceleration benefits. However, it is the most vulnerable, often suffering significant performance degradation with imbalanced or biased data schema, thus raising concerns about its accuracy and reliability in on-device deployment. Therefore, there is a looming need for a new data pruning paradigm that maintains the efficiency of previous practices while ensuring balance and robustness. Unlike the fields of computer vision and natural language processing, where mature solutions have been developed to address these issues, graph neural networks (GNNs) continue to struggle with increasingly large-scale, imbalanced, and noisy datasets, lacking a unified dataset pruning solution. To achieve this, we introduce a novel dynamic soft-pruning method, GDeR, designed to update the training ``basket'' during the process using trainable prototypes. GDeR first constructs a well-modeled graph embedding hypersphere and then samples \textit{representative, balanced, and unbiased subsets} from this embedding space, which achieves the goal we called Graph Training Debugging. Extensive experiments on five datasets across three GNN backbones, demonstrate that GDeR (I) achieves or surpasses the performance of the full dataset with 30%~50% fewer training samples, (II) attains up to a 2.81x lossless training speedup, and (III) outperforms state-of-the-art pruning methods in imbalanced training and noisy training scenarios by 0.3%~4.3% and 3.6%~7.8%, respectively.
Abstract:Recent advancements in large language model (LLM)-powered agents have shown that collective intelligence can significantly outperform individual capabilities, largely attributed to the meticulously designed inter-agent communication topologies. Though impressive in performance, existing multi-agent pipelines inherently introduce substantial token overhead, as well as increased economic costs, which pose challenges for their large-scale deployments. In response to this challenge, we propose an economical, simple, and robust multi-agent communication framework, termed $\texttt{AgentPrune}$, which can seamlessly integrate into mainstream multi-agent systems and prunes redundant or even malicious communication messages. Technically, $\texttt{AgentPrune}$ is the first to identify and formally define the \textit{communication redundancy} issue present in current LLM-based multi-agent pipelines, and efficiently performs one-shot pruning on the spatial-temporal message-passing graph, yielding a token-economic and high-performing communication topology. Extensive experiments across six benchmarks demonstrate that $\texttt{AgentPrune}$ \textbf{(I)} achieves comparable results as state-of-the-art topologies at merely $\$5.6$ cost compared to their $\$43.7$, \textbf{(II)} integrates seamlessly into existing multi-agent frameworks with $28.1\%\sim72.8\%\downarrow$ token reduction, and \textbf{(III)} successfully defend against two types of agent-based adversarial attacks with $3.5\%\sim10.8\%\uparrow$ performance boost.
Abstract:With the emergence of various molecular tasks and massive datasets, how to perform efficient training has become an urgent yet under-explored issue in the area. Data pruning (DP), as an oft-stated approach to saving training burdens, filters out less influential samples to form a coreset for training. However, the increasing reliance on pretrained models for molecular tasks renders traditional in-domain DP methods incompatible. Therefore, we propose a Molecular data Pruning framework for enhanced Generalization (MolPeg), which focuses on the source-free data pruning scenario, where data pruning is applied with pretrained models. By maintaining two models with different updating paces during training, we introduce a novel scoring function to measure the informativeness of samples based on the loss discrepancy. As a plug-and-play framework, MolPeg realizes the perception of both source and target domain and consistently outperforms existing DP methods across four downstream tasks. Remarkably, it can surpass the performance obtained from full-dataset training, even when pruning up to 60-70% of the data on HIV and PCBA dataset. Our work suggests that the discovery of effective data-pruning metrics could provide a viable path to both enhanced efficiency and superior generalization in transfer learning.
Abstract:Driven by the powerful representation ability of Graph Neural Networks (GNNs), plentiful GNN models have been widely deployed in many real-world applications. Nevertheless, due to distribution disparities between different demographic groups, fairness in high-stake decision-making systems is receiving increasing attention. Although lots of recent works devoted to improving the fairness of GNNs and achieved considerable success, they all require significant architectural changes or additional loss functions requiring more hyper-parameter tuning. Surprisingly, we find that simple re-balancing methods can easily match or surpass existing fair GNN methods. We claim that the imbalance across different demographic groups is a significant source of unfairness, resulting in imbalanced contributions from each group to the parameters updating. However, these simple re-balancing methods have their own shortcomings during training. In this paper, we propose FairGB, Fair Graph Neural Network via re-Balancing, which mitigates the unfairness of GNNs by group balancing. Technically, FairGB consists of two modules: counterfactual node mixup and contribution alignment loss. Firstly, we select counterfactual pairs across inter-domain and inter-class, and interpolate the ego-networks to generate new samples. Guided by analysis, we can reveal the debiasing mechanism of our model by the causal view and prove that our strategy can make sensitive attributes statistically independent from target labels. Secondly, we reweigh the contribution of each group according to gradients. By combining these two modules, they can mutually promote each other. Experimental results on benchmark datasets show that our method can achieve state-of-the-art results concerning both utility and fairness metrics. Code is available at https://github.com/ZhixunLEE/FairGB.
Abstract:Cold-start rating prediction is a fundamental problem in recommender systems that has been extensively studied. Many methods have been proposed that exploit explicit relations among existing data, such as collaborative filtering, social recommendations and heterogeneous information network, to alleviate the data insufficiency issue for cold-start users and items. However, the explicit relations constructed based on data between different roles may be unreliable and irrelevant, which limits the performance ceiling of the specific recommendation task. Motivated by this, in this paper, we propose a flexible framework dubbed heterogeneous interaction rating network (HIRE). HIRE dose not solely rely on the pre-defined interaction pattern or the manually constructed heterogeneous information network. Instead, we devise a Heterogeneous Interaction Module (HIM) to jointly model the heterogeneous interactions and directly infer the important interactions via the observed data. In the experiments, we evaluate our model under three cold-start settings on three real-world datasets. The experimental results show that HIRE outperforms other baselines by a large margin. Furthermore, we visualize the inferred interactions of HIRE to confirm the contribution of our model.
Abstract:With the rapid development of social media, the wide dissemination of fake news on social media is increasingly threatening both individuals and society. In the dynamic landscape of social media, fake news detection aims to develop a model trained on news reporting past events. The objective is to predict and identify fake news about future events, which often relate to subjects entirely different from those in the past. However, existing fake detection methods exhibit a lack of robustness and cannot generalize to unseen events. To address this, we introduce Future ADaptive Event-based Fake news Detection (FADE) framework. Specifically, we train a target predictor through an adaptive augmentation strategy and graph contrastive learning to make more robust overall predictions. Simultaneously, we independently train an event-only predictor to obtain biased predictions. Then we further mitigate event bias by obtaining the final prediction by subtracting the output of the event-only predictor from the output of the target predictor. Encouraging results from experiments designed to emulate real-world social media conditions validate the effectiveness of our method in comparison to existing state-of-the-art approaches.
Abstract:With the development of foundation models such as large language models, zero-shot transfer learning has become increasingly significant. This is highlighted by the generative capabilities of NLP models like GPT-4, and the retrieval-based approaches of CV models like CLIP, both of which effectively bridge the gap between seen and unseen data. In the realm of graph learning, the continuous emergence of new graphs and the challenges of human labeling also amplify the necessity for zero-shot transfer learning, driving the exploration of approaches that can generalize across diverse graph data without necessitating dataset-specific and label-specific fine-tuning. In this study, we extend such paradigms to zero-shot transferability in graphs by introducing ZeroG, a new framework tailored to enable cross-dataset generalization. Addressing the inherent challenges such as feature misalignment, mismatched label spaces, and negative transfer, we leverage a language model to encode both node attributes and class semantics, ensuring consistent feature dimensions across datasets. We also propose a prompt-based subgraph sampling module that enriches the semantic information and structure information of extracted subgraphs using prompting nodes and neighborhood aggregation, respectively. We further adopt a lightweight fine-tuning strategy that reduces the risk of overfitting and maintains the zero-shot learning efficacy of the language model. The results underscore the effectiveness of our model in achieving significant cross-dataset zero-shot transferability, opening pathways for the development of graph foundation models. Especially, ZeroG, as a zero-shot method, can even achieve results comparable to those of semi-supervised learning on Pubmed.
Abstract:Graph plays a significant role in representing and analyzing complex relationships in real-world applications such as citation networks, social networks, and biological data. Recently, Large Language Models (LLMs), which have achieved tremendous success in various domains, have also been leveraged in graph-related tasks to surpass traditional Graph Neural Networks (GNNs) based methods and yield state-of-the-art performance. In this survey, we first present a comprehensive review and analysis of existing methods that integrate LLMs with graphs. First of all, we propose a new taxonomy, which organizes existing methods into three categories based on the role (i.e., enhancer, predictor, and alignment component) played by LLMs in graph-related tasks. Then we systematically survey the representative methods along the three categories of the taxonomy. Finally, we discuss the remaining limitations of existing studies and highlight promising avenues for future research. The relevant papers are summarized and will be consistently updated at: https://github.com/yhLeeee/Awesome-LLMs-in-Graph-tasks.
Abstract:Graph Structure Learning (GSL) has recently garnered considerable attention due to its ability to optimize both the parameters of Graph Neural Networks (GNNs) and the computation graph structure simultaneously. Despite the proliferation of GSL methods developed in recent years, there is no standard experimental setting or fair comparison for performance evaluation, which creates a great obstacle to understanding the progress in this field. To fill this gap, we systematically analyze the performance of GSL in different scenarios and develop a comprehensive Graph Structure Learning Benchmark (GSLB) curated from 20 diverse graph datasets and 16 distinct GSL algorithms. Specifically, GSLB systematically investigates the characteristics of GSL in terms of three dimensions: effectiveness, robustness, and complexity. We comprehensively evaluate state-of-the-art GSL algorithms in node- and graph-level tasks, and analyze their performance in robust learning and model complexity. Further, to facilitate reproducible research, we have developed an easy-to-use library for training, evaluating, and visualizing different GSL methods. Empirical results of our extensive experiments demonstrate the ability of GSL and reveal its potential benefits on various downstream tasks, offering insights and opportunities for future research. The code of GSLB is available at: https://github.com/GSL-Benchmark/GSLB.
Abstract:Molecular Representation Learning (MRL) has emerged as a powerful tool for drug and materials discovery in a variety of tasks such as virtual screening and inverse design. While there has been a surge of interest in advancing model-centric techniques, the influence of both data quantity and quality on molecular representations is not yet clearly understood within this field. In this paper, we delve into the neural scaling behaviors of MRL from a data-centric viewpoint, examining four key dimensions: (1) data modalities, (2) dataset splitting, (3) the role of pre-training, and (4) model capacity. Our empirical studies confirm a consistent power-law relationship between data volume and MRL performance across these dimensions. Additionally, through detailed analysis, we identify potential avenues for improving learning efficiency. To challenge these scaling laws, we adapt seven popular data pruning strategies to molecular data and benchmark their performance. Our findings underline the importance of data-centric MRL and highlight possible directions for future research.