Abstract:Training high-quality deep models necessitates vast amounts of data, resulting in overwhelming computational and memory demands. Recently, data pruning, distillation, and coreset selection have been developed to streamline data volume by retaining, synthesizing, or selecting a small yet informative subset from the full set. Among these methods, data pruning incurs the least additional training cost and offers the most practical acceleration benefits. However, it is the most vulnerable, often suffering significant performance degradation with imbalanced or biased data schema, thus raising concerns about its accuracy and reliability in on-device deployment. Therefore, there is a looming need for a new data pruning paradigm that maintains the efficiency of previous practices while ensuring balance and robustness. Unlike the fields of computer vision and natural language processing, where mature solutions have been developed to address these issues, graph neural networks (GNNs) continue to struggle with increasingly large-scale, imbalanced, and noisy datasets, lacking a unified dataset pruning solution. To achieve this, we introduce a novel dynamic soft-pruning method, GDeR, designed to update the training ``basket'' during the process using trainable prototypes. GDeR first constructs a well-modeled graph embedding hypersphere and then samples \textit{representative, balanced, and unbiased subsets} from this embedding space, which achieves the goal we called Graph Training Debugging. Extensive experiments on five datasets across three GNN backbones, demonstrate that GDeR (I) achieves or surpasses the performance of the full dataset with 30%~50% fewer training samples, (II) attains up to a 2.81x lossless training speedup, and (III) outperforms state-of-the-art pruning methods in imbalanced training and noisy training scenarios by 0.3%~4.3% and 3.6%~7.8%, respectively.
Abstract:Learning-based multi-view stereo (MVS) has gained fine reconstructions on popular datasets. However, supervised learning methods require ground truth for training, which is hard to be collected, especially for the large-scale datasets. Though nowadays unsupervised learning methods have been proposed and have gotten gratifying results, those methods still fail to reconstruct intact results in challenging scenes, such as weakly-textured surfaces, as those methods primarily depend on pixel-wise photometric consistency which is subjected to various illuminations. To alleviate matching ambiguity in those challenging scenes, this paper proposes robust loss functions leveraging constraints beneath multi-view images: 1) Patch-wise photometric consistency loss, which expands the receptive field of the features in multi-view similarity measuring, 2) Robust twoview geometric consistency, which includes a cross-view depth consistency checking with the minimum occlusion. Our unsupervised strategy can be implemented with arbitrary depth estimation frameworks and can be trained with arbitrary large-scale MVS datasets. Experiments show that our method can decrease the matching ambiguity and particularly improve the completeness of weakly-textured reconstruction. Moreover, our method reaches the performance of the state-of-the-art methods on popular benchmarks, like DTU, Tanks and Temples and ETH3D. The code will be released soon.