Mark
Abstract:Human values and their measurement are long-standing interdisciplinary inquiry. Recent advances in AI have sparked renewed interest in this area, with large language models (LLMs) emerging as both tools and subjects of value measurement. This work introduces Generative Psychometrics for Values (GPV), an LLM-based, data-driven value measurement paradigm, theoretically grounded in text-revealed selective perceptions. We begin by fine-tuning an LLM for accurate perception-level value measurement and verifying the capability of LLMs to parse texts into perceptions, forming the core of the GPV pipeline. Applying GPV to human-authored blogs, we demonstrate its stability, validity, and superiority over prior psychological tools. Then, extending GPV to LLM value measurement, we advance the current art with 1) a psychometric methodology that measures LLM values based on their scalable and free-form outputs, enabling context-specific measurement; 2) a comparative analysis of measurement paradigms, indicating response biases of prior methods; and 3) an attempt to bridge LLM values and their safety, revealing the predictive power of different value systems and the impacts of various values on LLM safety. Through interdisciplinary efforts, we aim to leverage AI for next-generation psychometrics and psychometrics for value-aligned AI.
Abstract:Large Language Models (LLMs) are transforming diverse fields and gaining increasing influence as human proxies. This development underscores the urgent need for evaluating value orientations and understanding of LLMs to ensure their responsible integration into public-facing applications. This work introduces ValueBench, the first comprehensive psychometric benchmark for evaluating value orientations and value understanding in LLMs. ValueBench collects data from 44 established psychometric inventories, encompassing 453 multifaceted value dimensions. We propose an evaluation pipeline grounded in realistic human-AI interactions to probe value orientations, along with novel tasks for evaluating value understanding in an open-ended value space. With extensive experiments conducted on six representative LLMs, we unveil their shared and distinctive value orientations and exhibit their ability to approximate expert conclusions in value-related extraction and generation tasks. ValueBench is openly accessible at https://github.com/Value4AI/ValueBench.
Abstract:Placement is a critical and challenging step of modern chip design, with routability being an essential indicator of placement quality. Current routability-oriented placers typically apply an iterative two-stage approach, wherein the first stage generates a placement solution, and the second stage provides non-differentiable routing results to heuristically improve the solution quality. This method hinders jointly optimizing the routability aspect during placement. To address this problem, this work introduces RoutePlacer, an end-to-end routability-aware placement method. It trains RouteGNN, a customized graph neural network, to efficiently and accurately predict routability by capturing and fusing geometric and topological representations of placements. Well-trained RouteGNN then serves as a differentiable approximation of routability, enabling end-to-end gradient-based routability optimization. In addition, RouteGNN can improve two-stage placers as a plug-and-play alternative to external routers. Our experiments on DREAMPlace, an open-source AI4EDA platform, show that RoutePlacer can reduce Total Overflow by up to 16% while maintaining routed wirelength, compared to the state-of-the-art; integrating RouteGNN within two-stage placers leads to a 44% reduction in Total Overflow without compromising wirelength.
Abstract:Graph Transformers (GTs) have significantly advanced the field of graph representation learning by overcoming the limitations of message-passing graph neural networks (GNNs) and demonstrating promising performance and expressive power. However, the quadratic complexity of self-attention mechanism in GTs has limited their scalability, and previous approaches to address this issue often suffer from expressiveness degradation or lack of versatility. To address this issue, we propose AnchorGT, a novel attention architecture for GTs with global receptive field and almost linear complexity, which serves as a flexible building block to improve the scalability of a wide range of GT models. Inspired by anchor-based GNNs, we employ structurally important $k$-dominating node set as anchors and design an attention mechanism that focuses on the relationship between individual nodes and anchors, while retaining the global receptive field for all nodes. With its intuitive design, AnchorGT can easily replace the attention module in various GT models with different network architectures and structural encodings, resulting in reduced computational overhead without sacrificing performance. In addition, we theoretically prove that AnchorGT attention can be strictly more expressive than Weisfeiler-Lehman test, showing its superiority in representing graph structures. Our experiments on three state-of-the-art GT models demonstrate that their AnchorGT variants can achieve better results while being faster and significantly more memory efficient.
Abstract:The omnipresence of NP-hard combinatorial optimization problems (COPs) compels domain experts to engage in trial-and-error heuristic design process. The long-standing endeavor of design automation has gained new momentum with the rise of large language models (LLMs). This paper introduces Language Hyper-Heuristics (LHHs), an emerging variant of Hyper-Heuristics that leverages LLMs for heuristic generation, featuring minimal manual intervention and open-ended heuristic spaces. To empower LHHs, we present Reflective Evolution (ReEvo), a generic searching framework that emulates the reflective design approach of human experts while far surpassing human capabilities with its scalable LLM inference, Internet-scale domain knowledge, and powerful evolutionary search. Evaluations across 12 COP settings show that 1) verbal reflections for evolution lead to smoother fitness landscapes, explicit inference of black-box COP settings, and better search results; 2) heuristics generated by ReEvo in minutes can outperform state-of-the-art human designs and neural solvers; 3) LHHs enable efficient algorithm design automation even when challenged with black-box COPs, demonstrating its potential for complex and novel real-world applications. Our code is available: https://github.com/ai4co/LLM-as-HH.
Abstract:Graph Transformer has recently received wide attention in the research community with its outstanding performance, yet its structural expressive power has not been well analyzed. Inspired by the connections between Weisfeiler-Lehman (WL) graph isomorphism test and graph neural network (GNN), we introduce \textbf{SEG-WL test} (\textbf{S}tructural \textbf{E}ncoding enhanced \textbf{G}lobal \textbf{W}eisfeiler-\textbf{L}ehman test), a generalized graph isomorphism test algorithm as a powerful theoretical tool for exploring the structural discriminative power of graph Transformers. We theoretically prove that the SEG-WL test is an expressivity upper bound on a wide range of graph Transformers, and the representational power of SEG-WL test can be approximated by a simple Transformer network arbitrarily under certain conditions. With the SEG-WL test, we show how graph Transformers' expressive power is determined by the design of structural encodings, and present conditions that make the expressivity of graph Transformers beyond WL test and GNNs. Moreover, motivated by the popular shortest path distance encoding, we follow the theory-oriented principles and develop a provably stronger structural encoding method, Shortest Path Induced Subgraph (\textit{SPIS}) encoding. Our theoretical findings provide a novel and practical paradigm for investigating the expressive power of graph Transformers, and extensive synthetic and real-world experiments empirically verify the strengths of our proposed methods.
Abstract:Many real-world graph learning tasks require handling dynamic graphs where new nodes and edges emerge. Dynamic graph learning methods commonly suffer from the catastrophic forgetting problem, where knowledge learned for previous graphs is overwritten by updates for new graphs. To alleviate the problem, continual graph learning methods are proposed. However, existing continual graph learning methods aim to learn new patterns and maintain old ones with the same set of parameters of fixed size, and thus face a fundamental tradeoff between both goals. In this paper, we propose Parameter Isolation GNN (PI-GNN) for continual learning on dynamic graphs that circumvents the tradeoff via parameter isolation and expansion. Our motivation lies in that different parameters contribute to learning different graph patterns. Based on the idea, we expand model parameters to continually learn emerging graph patterns. Meanwhile, to effectively preserve knowledge for unaffected patterns, we find parameters that correspond to them via optimization and freeze them to prevent them from being rewritten. Experiments on eight real-world datasets corroborate the effectiveness of PI-GNN compared to state-of-the-art baselines.
Abstract:Recommender systems are essential to various fields, e.g., e-commerce, e-learning, and streaming media. At present, graph neural networks (GNNs) for session-based recommendations normally can only recommend items existing in users' historical sessions. As a result, these GNNs have difficulty recommending items that users have never interacted with (new items), which leads to a phenomenon of information cocoon. Therefore, it is necessary to recommend new items to users. As there is no interaction between new items and users, we cannot include new items when building session graphs for GNN session-based recommender systems. Thus, it is challenging to recommend new items for users when using GNN-based methods. We regard this challenge as '\textbf{G}NN \textbf{S}ession-based \textbf{N}ew \textbf{I}tem \textbf{R}ecommendation (GSNIR)'. To solve this problem, we propose a dual-intent enhanced graph neural network for it. Due to the fact that new items are not tied to historical sessions, the users' intent is difficult to predict. We design a dual-intent network to learn user intent from an attention mechanism and the distribution of historical data respectively, which can simulate users' decision-making process in interacting with a new item. To solve the challenge that new items cannot be learned by GNNs, inspired by zero-shot learning (ZSL), we infer the new item representation in GNN space by using their attributes. By outputting new item probabilities, which contain recommendation scores of the corresponding items, the new items with higher scores are recommended to users. Experiments on two representative real-world datasets show the superiority of our proposed method. The case study from the real-world verifies interpretability benefits brought by the dual-intent module and the new item reasoning module. The code is available at Github: https://github.com/Ee1s/NirGNN
Abstract:Graph Transformer is gaining increasing attention in the field of machine learning and has demonstrated state-of-the-art performance on benchmarks for graph representation learning. However, as current implementations of Graph Transformer primarily focus on learning representations of small-scale graphs, the quadratic complexity of the global self-attention mechanism presents a challenge for full-batch training when applied to larger graphs. Additionally, conventional sampling-based methods fail to capture necessary high-level contextual information, resulting in a significant loss of performance. In this paper, we introduce the Hierarchical Scalable Graph Transformer (HSGT) as a solution to these challenges. HSGT successfully scales the Transformer architecture to node representation learning tasks on large-scale graphs, while maintaining high performance. By utilizing graph hierarchies constructed through coarsening techniques, HSGT efficiently updates and stores multi-scale information in node embeddings at different levels. Together with sampling-based training methods, HSGT effectively captures and aggregates multi-level information on the hierarchical graph using only Transformer blocks. Empirical evaluations demonstrate that HSGT achieves state-of-the-art performance on large-scale benchmarks with graphs containing millions of nodes with high efficiency.
Abstract:Researches on analyzing graphs with Graph Neural Networks (GNNs) have been receiving more and more attention because of the great expressive power of graphs. GNNs map the adjacency matrix and node features to node representations by message passing through edges on each convolution layer. However, the message passed through GNNs is not always beneficial for all parts in a graph. Specifically, as the data distribution is different over the graph, the receptive field (the farthest nodes that a node can obtain information from) needed to gather information is also different. Existing GNNs treat all parts of the graph uniformly, which makes it difficult to adaptively pass the most informative message for each unique part. To solve this problem, we propose two regularization terms that consider message passing locally: (1) Intra-Energy Reg and (2) Inter-Energy Reg. Through experiments and theoretical discussion, we first show that the speed of smoothing of different parts varies enormously and the topology of each part affects the way of smoothing. With Intra-Energy Reg, we strengthen the message passing within each part, which is beneficial for getting more useful information. With Inter-Energy Reg, we improve the ability of GNNs to distinguish different nodes. With the proposed two regularization terms, GNNs are able to filter the most useful information adaptively, learn more robustly and gain higher expressiveness. Moreover, the proposed LEReg can be easily applied to other GNN models with plug-and-play characteristics. Extensive experiments on several benchmarks verify that GNNs with LEReg outperform or match the state-of-the-art methods. The effectiveness and efficiency are also empirically visualized with elaborate experiments.