Abstract:Multimodal learning has gained increasing importance across various fields, offering the ability to integrate data from diverse sources such as images, text, and personalized records, which are frequently observed in medical domains. However, in scenarios where some modalities are missing, many existing frameworks struggle to accommodate arbitrary modality combinations, often relying heavily on a single modality or complete data. This oversight of potential modality combinations limits their applicability in real-world situations. To address this challenge, we propose Flex-MoE (Flexible Mixture-of-Experts), a new framework designed to flexibly incorporate arbitrary modality combinations while maintaining robustness to missing data. The core idea of Flex-MoE is to first address missing modalities using a new missing modality bank that integrates observed modality combinations with the corresponding missing ones. This is followed by a uniquely designed Sparse MoE framework. Specifically, Flex-MoE first trains experts using samples with all modalities to inject generalized knowledge through the generalized router ($\mathcal{G}$-Router). The $\mathcal{S}$-Router then specializes in handling fewer modality combinations by assigning the top-1 gate to the expert corresponding to the observed modality combination. We evaluate Flex-MoE on the ADNI dataset, which encompasses four modalities in the Alzheimer's Disease domain, as well as on the MIMIC-IV dataset. The results demonstrate the effectiveness of Flex-MoE highlighting its ability to model arbitrary modality combinations in diverse missing modality scenarios. Code is available at https://github.com/UNITES-Lab/flex-moe.
Abstract:As large language models (LLMs) increasingly shape the AI landscape, fine-tuning pretrained models has become more popular than in the pre-LLM era for achieving optimal performance in domain-specific tasks. However, pretrained LLMs such as ChatGPT are periodically evolved, i.e., model parameters are frequently updated), making it challenging for downstream users with limited resources to keep up with fine-tuning the newest LLMs for their domain application. Even though fine-tuning costs have nowadays been reduced thanks to the innovations of parameter-efficient fine-tuning such as LoRA, not all downstream users have adequate computing for frequent personalization. Moreover, access to fine-tuning datasets, particularly in sensitive domains such as healthcare, could be time-restrictive, making it crucial to retain the knowledge encoded in earlier fine-tuned rounds for future adaptation. In this paper, we present PortLLM, a training-free framework that (i) creates an initial lightweight model update patch to capture domain-specific knowledge, and (ii) allows a subsequent seamless plugging for the continual personalization of evolved LLM at minimal cost. Our extensive experiments cover seven representative datasets, from easier question-answering tasks {BoolQ, SST2} to harder reasoning tasks {WinoGrande, GSM8K}, and models including {Mistral-7B, Llama2, Llama3.1, and Gemma2}, validating the portability of our designed model patches and showcasing the effectiveness of our proposed framework. For instance, PortLLM achieves comparable performance to LoRA fine-tuning with reductions of up to 12.2x in GPU memory usage. Finally, we provide theoretical justifications to understand the portability of our model update patches, which offers new insights into the theoretical dimension of LLMs' personalization.
Abstract:Recent advancements in large language model (LLM)-powered agents have shown that collective intelligence can significantly outperform individual capabilities, largely attributed to the meticulously designed inter-agent communication topologies. Though impressive in performance, existing multi-agent pipelines inherently introduce substantial token overhead, as well as increased economic costs, which pose challenges for their large-scale deployments. In response to this challenge, we propose an economical, simple, and robust multi-agent communication framework, termed $\texttt{AgentPrune}$, which can seamlessly integrate into mainstream multi-agent systems and prunes redundant or even malicious communication messages. Technically, $\texttt{AgentPrune}$ is the first to identify and formally define the \textit{communication redundancy} issue present in current LLM-based multi-agent pipelines, and efficiently performs one-shot pruning on the spatial-temporal message-passing graph, yielding a token-economic and high-performing communication topology. Extensive experiments across six benchmarks demonstrate that $\texttt{AgentPrune}$ \textbf{(I)} achieves comparable results as state-of-the-art topologies at merely $\$5.6$ cost compared to their $\$43.7$, \textbf{(II)} integrates seamlessly into existing multi-agent frameworks with $28.1\%\sim72.8\%\downarrow$ token reduction, and \textbf{(III)} successfully defend against two types of agent-based adversarial attacks with $3.5\%\sim10.8\%\uparrow$ performance boost.
Abstract:Recent advancements in graph-based approaches for multiplexed immunofluorescence (mIF) images have significantly propelled the field forward, offering deeper insights into patient-level phenotyping. However, current graph-based methodologies encounter two primary challenges: (1) Cellular Heterogeneity, where existing approaches fail to adequately address the inductive biases inherent in graphs, particularly the homophily characteristic observed in cellular connectivity and; (2) Scalability, where handling cellular graphs from high-dimensional images faces difficulties in managing a high number of cells. To overcome these limitations, we introduce Mew, a novel framework designed to efficiently process mIF images through the lens of multiplex network. Mew innovatively constructs a multiplex network comprising two distinct layers: a Voronoi network for geometric information and a Cell-type network for capturing cell-wise homogeneity. This framework equips a scalable and efficient Graph Neural Network (GNN), capable of processing the entire graph during training. Furthermore, Mew integrates an interpretable attention module that autonomously identifies relevant layers for image classification. Extensive experiments on a real-world patient dataset from various institutions highlight Mew's remarkable efficacy and efficiency, marking a significant advancement in mIF image analysis. The source code of Mew can be found here: \url{https://github.com/UNITES-Lab/Mew}
Abstract:Graph Neural Networks (GNNs) have achieved notable success in various applications over graph data. However, recent research has revealed that real-world graphs often contain noise, and GNNs are susceptible to noise in the graph. To address this issue, several Graph Structure Learning (GSL) models have been introduced. While GSL models are tailored to enhance robustness against edge noise through edge reconstruction, a significant limitation surfaces: their high reliance on node features. This inherent dependence amplifies their susceptibility to noise within node features. Recognizing this vulnerability, we present DEGNN, a novel GNN model designed to adeptly mitigate noise in both edges and node features. The core idea of DEGNN is to design two separate experts: an edge expert and a node feature expert. These experts utilize self-supervised learning techniques to produce modified edges and node features. Leveraging these modified representations, DEGNN subsequently addresses downstream tasks, ensuring robustness against noise present in both edges and node features of real-world graphs. Notably, the modification process can be trained end-to-end, empowering DEGNN to adjust dynamically and achieves optimal edge and node representations for specific tasks. Comprehensive experiments demonstrate DEGNN's efficacy in managing noise, both in original real-world graphs and in graphs with synthetic noise.
Abstract:Recommender systems have become indispensable in music streaming services, enhancing user experiences by personalizing playlists and facilitating the serendipitous discovery of new music. However, the existing recommender systems overlook the unique challenges inherent in the music domain, specifically shuffle play, which provides subsequent tracks in a random sequence. Based on our observation that the shuffle play sessions hinder the overall training process of music recommender systems mainly due to the high unique transition rates of shuffle play sessions, we propose a Music Recommender System with Shuffle Play Recommendation Enhancement (MUSE). MUSE employs the self-supervised learning framework that maximizes the agreement between the original session and the augmented session, which is augmented by our novel session augmentation method, called transition-based augmentation. To further facilitate the alignment of the representations between the two views, we devise two fine-grained matching strategies, i.e., item- and similarity-based matching strategies. Through rigorous experiments conducted across diverse environments, we demonstrate MUSE's efficacy over 12 baseline models on a large-scale Music Streaming Sessions Dataset (MSSD) from Spotify. The source code of MUSE is available at \url{https://github.com/yunhak0/MUSE}.
Abstract:Existing studies for applying the mixup technique on graphs mainly focus on graph classification tasks, while the research in node classification is still under-explored. In this paper, we propose a novel mixup augmentation for node classification called Structural Mixup (S-Mixup). The core idea is to take into account the structural information while mixing nodes. Specifically, S-Mixup obtains pseudo-labels for unlabeled nodes in a graph along with their prediction confidence via a Graph Neural Network (GNN) classifier. These serve as the criteria for the composition of the mixup pool for both inter and intra-class mixups. Furthermore, we utilize the edge gradient obtained from the GNN training and propose a gradient-based edge selection strategy for selecting edges to be attached to the nodes generated by the mixup. Through extensive experiments on real-world benchmark datasets, we demonstrate the effectiveness of S-Mixup evaluated on the node classification task. We observe that S-Mixup enhances the robustness and generalization performance of GNNs, especially in heterophilous situations. The source code of S-Mixup can be found at \url{https://github.com/SukwonYun/S-Mixup}
Abstract:The long-tailed problem is a long-standing challenge in Sequential Recommender Systems (SRS) in which the problem exists in terms of both users and items. While many existing studies address the long-tailed problem in SRS, they only focus on either the user or item perspective. However, we discover that the long-tailed user and item problems exist at the same time, and considering only either one of them leads to sub-optimal performance of the other one. In this paper, we propose a novel framework for SRS, called Mutual Enhancement of Long-Tailed user and item (MELT), that jointly alleviates the long-tailed problem in the perspectives of both users and items. MELT consists of bilateral branches each of which is responsible for long-tailed users and items, respectively, and the branches are trained to mutually enhance each other, which is trained effectively by a curriculum learning-based training. MELT is model-agnostic in that it can be seamlessly integrated with existing SRS models. Extensive experiments on eight datasets demonstrate the benefit of alleviating the long-tailed problems in terms of both users and items even without sacrificing the performance of head users and items, which has not been achieved by existing methods. To the best of our knowledge, MELT is the first work that jointly alleviates the long-tailed user and item problems in SRS.
Abstract:Existing Graph Neural Networks (GNNs) usually assume a balanced situation where both the class distribution and the node degree distribution are balanced. However, in real-world situations, we often encounter cases where a few classes (i.e., head class) dominate other classes (i.e., tail class) as well as in the node degree perspective, and thus naively applying existing GNNs eventually fall short of generalizing to the tail cases. Although recent studies proposed methods to handle long-tail situations on graphs, they only focus on either the class long-tailedness or the degree long-tailedness. In this paper, we propose a novel framework for training GNNs, called Long-Tail Experts for Graphs (LTE4G), which jointly considers the class long-tailedness, and the degree long-tailedness for node classification. The core idea is to assign an expert GNN model to each subset of nodes that are split in a balanced manner considering both the class and degree long-tailedness. After having trained an expert for each balanced subset, we adopt knowledge distillation to obtain two class-wise students, i.e., Head class student and Tail class student, each of which is responsible for classifying nodes in the head classes and tail classes, respectively. We demonstrate that LTE4G outperforms a wide range of state-of-the-art methods in node classification evaluated on both manual and natural imbalanced graphs. The source code of LTE4G can be found at https://github.com/SukwonYun/LTE4G.