Johns Hopkins University
Abstract:Large language models (LLMs) are susceptible to persuasion, which can pose risks when models are faced with an adversarial interlocutor. We take a first step towards defending models against persuasion while also arguing that defense against adversarial (i.e. negative) persuasion is only half of the equation: models should also be able to accept beneficial (i.e. positive) persuasion to improve their answers. We show that optimizing models for only one side results in poor performance on the other. In order to balance positive and negative persuasion, we introduce Persuasion-Balanced Training (or PBT), which leverages multi-agent recursive dialogue trees to create data and trains models via preference optimization to accept persuasion when appropriate. PBT consistently improves resistance to misinformation and resilience to being challenged while also resulting in the best overall performance on holistic data containing both positive and negative persuasion. Crucially, we show that PBT models are better teammates in multi-agent debates. We find that without PBT, pairs of stronger and weaker models have unstable performance, with the order in which the models present their answers determining whether the team obtains the stronger or weaker model's performance. PBT leads to better and more stable results and less order dependence, with the stronger model consistently pulling the weaker one up.
Abstract:The process of creating training data to teach models is currently driven by humans, who manually analyze model weaknesses and plan how to create data that improves a student model. Recent approaches using LLMs as annotators reduce human effort, but still require humans to interpret feedback from evaluations and control the LLM to produce data the student needs. Automating this labor-intensive process by creating autonomous data generation agents - or teachers - is desirable, but requires environments that can simulate the feedback-driven, iterative, closed loop of data creation. To enable rapid and scalable testing for such agents and their modules, we introduce DataEnvGym, a testbed of teacher environments for data generation agents. DataEnvGym frames data generation as a sequential decision-making task, involving an agent consisting of a data generation policy (which generates a plan for creating training data) and a data generation engine (which transforms the plan into data), inside an environment that provides student feedback. The agent's goal is to improve student performance. Students are iteratively trained and evaluated on generated data, with their feedback (in the form of errors or weak skills) being reported to the agent after each iteration. DataEnvGym includes multiple teacher environment instantiations across 3 levels of structure in the state representation and action space. More structured environments are based on inferred skills and offer more interpretability and curriculum control. We support 3 diverse tasks (math, code, and VQA) and test multiple students and teachers. Example agents in our teaching environments can iteratively improve students across tasks and settings. Moreover, we show that environments teach different skill levels and test variants of key modules, pointing to future work in improving data generation agents, engines, and feedback mechanisms.
Abstract:Reward Models (RMs) play a crucial role in aligning LLMs with human preferences, enhancing their performance by ranking outputs during inference or iterative training. However, the degree to which an RM generalizes to new tasks is often not known a priori (e.g. some RMs may excel at scoring creative writing vs. math reasoning). Therefore, using only one fixed RM while training LLMs can be suboptimal. Moreover, optimizing LLMs with multiple RMs simultaneously can be prohibitively computationally-intensive and challenging due to conflicting signals from different RMs, potentially degrading performance. To address these challenges, we introduce LASeR (Learning to Adaptively Select Rewards), which iteratively trains LLMs using multiple RMs, selecting and utilizing the most well-suited RM for each instance to rank outputs and generate preference data, framed as a multi-armed bandit problem. Our results on commonsense and math reasoning tasks demonstrate that LASeR can boost iterative LLM optimization by optimizing for multiple RMs, improving the absolute average accuracy of Llama-3-8B over three datasets by 2.67% over training with ensemble RM scores while also showing superior training efficiency (e.g., a 2x speedup). Moreover, on WildChat, a benchmark of instruction-following prompts, we find that using Llama-3-8B LASeR leads to a 71.45% AlpacaEval win rate over sequentially optimizing multiple RMs. Extending to long-context generation tasks, we find that on Llama-3-8B, LASeR achieves an average improvement of 2.64 F1 and 2.42 F1 on single- and multi-document QA over random RM selection when used with best-of-n sampling. LASeR is robust to noisy rewards and generalizes to multiple settings. Finally, LASeR's RM selection changes depending on the underlying task or instance and we verify the presence of conflicting preferences from multiple RMs that can be mitigated using LASeR.
Abstract:Large Language Models' (LLM) reasoning can be improved using test-time aggregation strategies, i.e., generating multiple samples and voting among generated samples. While these improve performance, they often reach a saturation point. Refinement offers an alternative by using LLM-generated feedback to improve solution quality. However, refinement introduces 3 key challenges: (1) Excessive refinement: Uniformly refining all instances can over-correct and reduce the overall performance. (2) Inability to localize and address errors: LLMs have a limited ability to self-correct and struggle to identify and correct their own mistakes. (3) Insufficient refinement: Deciding how many iterations of refinement are needed is non-trivial, and stopping too soon could leave errors unaddressed. To tackle these issues, we propose MAgICoRe, which avoids excessive refinement by categorizing problem difficulty as easy or hard, solving easy problems with coarse-grained aggregation and hard ones with fine-grained and iterative multi-agent refinement. To improve error localization, we incorporate external step-wise reward model (RM) scores. Moreover, to ensure effective refinement, we employ a multi-agent loop with three agents: Solver, Reviewer (which generates targeted feedback based on step-wise RM scores), and the Refiner (which incorporates feedback). To ensure sufficient refinement, we re-evaluate updated solutions, iteratively initiating further rounds of refinement. We evaluate MAgICoRe on Llama-3-8B and GPT-3.5 and show its effectiveness across 5 math datasets. Even one iteration of MAgICoRe beats Self-Consistency by 3.4%, Best-of-k by 3.2%, and Self-Refine by 4.0% while using less than half the samples. Unlike iterative refinement with baselines, MAgICoRe continues to improve with more iterations. Finally, our ablations highlight the importance of MAgICoRe's RMs and multi-agent communication.
Abstract:Knowledge conflict arises from discrepancies between information in the context of a large language model (LLM) and the knowledge stored in its parameters. This can hurt performance when using standard decoding techniques, which tend to ignore the context. Existing test-time contrastive methods seek to address this by comparing the LLM's output distribution with and without the context and adjust the model according to the contrast between them. However, we find that these methods frequently misjudge the degree of conflict and struggle to handle instances that vary in their amount of conflict, with static methods over-adjusting when conflict is absent. We propose a fine-grained, instance-level approach called AdaCAD, which dynamically infers the weight of adjustment based on the degree of conflict, as measured by the Jensen-Shannon divergence between distributions representing contextual and parametric knowledge. Our experiments across four models on six diverse question-answering (QA) datasets and three summarization tasks demonstrate that our training-free adaptive method consistently outperforms other decoding methods on QA, with average accuracy gains of 14.21% (absolute) over a static contrastive baseline, and improves the factuality of summaries by 5.59 (AlignScore). Furthermore, our analysis shows that while decoding with contrastive baselines hurts performance when conflict is absent, AdaCAD mitigates these losses, making it more applicable to real-world datasets in which some examples have conflict and others do not.
Abstract:Language models can be used to solve long-horizon planning problems in two distinct modes: a fast 'System-1' mode, directly generating plans without any explicit search or backtracking, and a slow 'System-2' mode, planning step-by-step by explicitly searching over possible actions. While System-2 is typically more effective, it is also more computationally expensive, making it infeasible for long plans or large action spaces. Moreover, isolated System-1 or 2 ignores the user's end goals, failing to provide ways to control the model's behavior. To this end, we propose the System-1.x Planner, a controllable planning framework with LLMs that is capable of generating hybrid plans and balancing between the two planning modes based on the difficulty of the problem at hand. System-1.x consists of (i) a controller, (ii) a System-1 Planner, and (iii) a System-2 Planner. Based on a user-specified hybridization factor (x) governing the mixture between System-1 and 2, the controller decomposes a problem into sub-goals, and classifies them as easy or hard to be solved by either System-1 or 2, respectively. We fine-tune all three components on top of a single base LLM, requiring only search traces as supervision. Experiments with two diverse planning tasks -- Maze Navigation and Blocksworld -- show that our System-1.x Planner outperforms a System-1 Planner, a System-2 Planner trained to approximate A* search, and also a symbolic planner (A*). We demonstrate the following key properties of our planner: (1) controllability: increasing the hybridization factor (e.g., System-1.75 vs 1.5) performs more search, improving performance, (2) flexibility: by building a neuro-symbolic variant with a neural System-1 and a symbolic System-2, we can use existing symbolic methods, and (3) generalizability: by being able to learn from different search algorithms, our method is robust to the choice of search algorithm.
Abstract:The model editing problem concerns how language models should learn new facts about the world over time. While empirical research on model editing has drawn widespread attention, the conceptual foundations of model editing remain shaky -- perhaps unsurprisingly, since model editing is essentially belief revision, a storied problem in philosophy that has eluded succinct solutions for decades. Model editing nonetheless demands a solution, since we need to be able to control the knowledge within language models. With this goal in mind, this paper critiques the standard formulation of the model editing problem and proposes a formal testbed for model editing research. We first describe 12 open problems with model editing, based on challenges with (1) defining the problem, (2) developing benchmarks, and (3) assuming LLMs have editable beliefs in the first place. Many of these challenges are extremely difficult to address, e.g. determining far-reaching consequences of edits, labeling probabilistic entailments between facts, and updating beliefs of agent simulators. Next, we introduce a semi-synthetic dataset for model editing based on Wikidata, where we can evaluate edits against labels given by an idealized Bayesian agent. This enables us to say exactly how belief revision in language models falls short of a desirable epistemic standard. We encourage further research exploring settings where such a gold standard can be compared against. Our code is publicly available at: https://github.com/peterbhase/LLM-belief-revision
Abstract:Vision-language models (VLMs) can respond to queries about images in many languages. However, beyond language, culture affects how we see things. For example, individuals from Western cultures focus more on the central figure in an image while individuals from Eastern cultures attend more to scene context. In this work, we present a novel investigation that demonstrates and localizes VLMs' Western bias in image understanding. We evaluate large VLMs across subjective and objective visual tasks with culturally diverse images and annotations. We find that VLMs perform better on the Western subset than the Eastern subset of each task. Controlled experimentation tracing the source of this bias highlights the importance of a diverse language mix in text-only pre-training for building equitable VLMs, even when inference is performed in English. Moreover, while prompting in the language of a target culture can lead to reductions in bias, it is not a substitute for building AI more representative of the world's languages.
Abstract:Do norms of rationality apply to machine learning models, in particular language models? In this paper we investigate this question by focusing on a special subset of rational norms: coherence norms. We consider both logical coherence norms as well as coherence norms tied to the strength of belief. To make sense of the latter, we introduce the Minimal Assent Connection (MAC) and propose a new account of credence, which captures the strength of belief in language models. This proposal uniformly assigns strength of belief simply on the basis of model internal next token probabilities. We argue that rational norms tied to coherence do apply to some language models, but not to others. This issue is significant since rationality is closely tied to predicting and explaining behavior, and thus it is connected to considerations about AI safety and alignment, as well as understanding model behavior more generally.
Abstract:When answering questions, LLMs can convey not only an answer, but a level of confidence about the answer being correct. This includes explicit confidence markers (e.g. giving a numeric score) as well as implicit markers, like an authoritative tone or elaborating with additional knowledge. For LLMs to be trustworthy knowledge sources, the confidence they convey should match their actual expertise; however, most current models tend towards overconfidence. To calibrate both implicit and explicit confidence markers, we introduce a pragmatic, listener-aware finetuning method (LACIE) that models the listener, considering not only whether an answer is right, but whether it will be accepted by a listener. We cast calibration as preference optimization, creating data via a two-agent game, where a speaker model's outputs are judged by a simulated listener. We then finetune three LLMs (Mistral-7B, Llama3-8B, Llama3-70B) with LACIE, and show that the resulting models are better calibrated w.r.t. a simulated listener. Crucially, these trends transfer to human listeners, helping them correctly predict model correctness: we conduct a human evaluation where annotators accept or reject an LLM's answers, finding that training with LACIE results in 47% fewer incorrect answers being accepted while maintaining the same level of acceptance for correct answers. Furthermore, LACIE generalizes to another dataset, resulting in a large increase in truthfulness on TruthfulQA when trained on TriviaQA. Our analysis indicates that LACIE leads to a better confidence separation between correct and incorrect examples. Qualitatively, we find that a LACIE-trained model hedges more and implicitly signals certainty when it is correct by using an authoritative tone or including details. Finally, LACIE finetuning leads to an emergent increase in model abstention (e.g. saying "I don't know") for answers that are likely wrong.