Abstract:How to properly conduct human evaluations for text summarization is a longstanding challenge. The Pyramid human evaluation protocol, which assesses content selection by breaking the reference summary into sub-units and verifying their presence in the system summary, has been widely adopted. However, it suffers from a lack of systematicity in the definition and granularity of the sub-units. We address these problems by proposing QAPyramid, which decomposes each reference summary into finer-grained question-answer (QA) pairs according to the QA-SRL framework. We collect QA-SRL annotations for reference summaries from CNN/DM and evaluate 10 summarization systems, resulting in 8.9K QA-level annotations. We show that, compared to Pyramid, QAPyramid provides more systematic and fine-grained content selection evaluation while maintaining high inter-annotator agreement without needing expert annotations. Furthermore, we propose metrics that automate the evaluation pipeline and achieve higher correlations with QAPyramid than other widely adopted metrics, allowing future work to accurately and efficiently benchmark summarization systems.
Abstract:Large Language Models (LLMs) often exhibit positional bias in long-context settings, under-attending to information in the middle of inputs. We investigate the presence of this bias in long-form summarization, its impact on faithfulness, and various techniques to mitigate this bias. To consistently evaluate faithfulness, we first compile a benchmark of eight human-annotated long-form summarization datasets and perform a meta-evaluation of faithfulness metrics. We show that LLM-based faithfulness metrics, though effective with full-context inputs, remain sensitive to document order, indicating positional bias. Analyzing LLM-generated summaries across six datasets, we find a "U-shaped" trend in faithfulness, where LLMs faithfully summarize the beginning and end of documents but neglect middle content. Perturbing document order similarly reveals models are less faithful when important documents are placed in the middle of the input. We find that this behavior is partly due to shifting focus with context length: as context increases, summaries become less faithful, but beyond a certain length, faithfulness improves as the model focuses on the end. Finally, we experiment with different generation techniques to reduce positional bias and find that prompting techniques effectively direct model attention to specific positions, whereas more sophisticated approaches offer limited improvements. Our data and code are available in https://github.com/meetdavidwan/longformfact.
Abstract:There has been an increasing interest in detecting hallucinations in model-generated texts, both manually and automatically, at varying levels of granularity. However, most existing methods fail to precisely pinpoint the errors. In this work, we introduce QASemConsistency, a new formalism for localizing factual inconsistencies in attributable text generation, at a fine-grained level. Drawing inspiration from Neo-Davidsonian formal semantics, we propose decomposing the generated text into minimal predicate-argument level propositions, expressed as simple question-answer (QA) pairs, and assess whether each individual QA pair is supported by a trusted reference text. As each QA pair corresponds to a single semantic relation between a predicate and an argument, QASemConsistency effectively localizes the unsupported information. We first demonstrate the effectiveness of the QASemConsistency methodology for human annotation, by collecting crowdsourced annotations of granular consistency errors, while achieving a substantial inter-annotator agreement ($\kappa > 0.7)$. Then, we implement several methods for automatically detecting localized factual inconsistencies, with both supervised entailment models and open-source LLMs.
Abstract:Highlighting particularly relevant regions of an image can improve the performance of vision-language models (VLMs) on various vision-language (VL) tasks by guiding the model to attend more closely to these regions of interest. For example, VLMs can be given a "visual prompt", where visual markers such as bounding boxes delineate key image regions. However, current VLMs that can incorporate visual guidance are either proprietary and expensive or require costly training on curated data that includes visual prompts. We introduce Contrastive Region Guidance (CRG), a training-free guidance method that enables open-source VLMs to respond to visual prompts. CRG contrasts model outputs produced with and without visual prompts, factoring out biases revealed by the model when answering without the information required to produce a correct answer (i.e., the model's prior). CRG achieves substantial improvements in a wide variety of VL tasks: When region annotations are provided, CRG increases absolute accuracy by up to 11.1% on ViP-Bench, a collection of six diverse region-based tasks such as recognition, math, and object relationship reasoning. We also show CRG's applicability to spatial reasoning, with 10% improvement on What'sUp, as well as to compositional generalization -- improving accuracy by 11.5% and 7.5% on two challenging splits from SugarCrepe -- and to image-text alignment for generated images, where we improve by up to 8.4 AUROC and 6.8 F1 points on SeeTRUE. When reference regions are absent, CRG allows us to re-rank proposed regions in referring expression comprehension and phrase grounding benchmarks like RefCOCO/+/g and Flickr30K Entities, with an average gain of 3.2% in accuracy. Our analysis explores alternative masking strategies for CRG, quantifies CRG's probability shift, and evaluates the role of region guidance strength, empirically validating CRG's design choices.
Abstract:Language models (LMs) can generate hallucinations and incoherent outputs, which highlights their weak context dependency. Cache-LMs, which augment LMs with a memory of recent history, can increase context dependency and have shown remarkable performance in diverse language generation tasks. However, we find that even with training, the performance gain stemming from the cache component of current cache-LMs is suboptimal due to the misalignment between the current hidden states and those stored in the memory. In this work, we present HistAlign, a new training approach to ensure good cache alignment such that the model receives useful signals from the history. We first prove our concept on a simple and synthetic task where the memory is essential for correct predictions, and we show that the cache component of HistAlign is better aligned and improves overall performance. Next, we evaluate HistAlign on diverse downstream language generation tasks, including prompt continuation, abstractive summarization, and data-to-text. We demonstrate that HistAlign improves text coherence and faithfulness in open-ended and conditional generation settings respectively. HistAlign is also generalizable across different model families, showcasing its strength in improving context dependency of LMs in diverse scenarios. Our code is publicly available at https://github.com/meetdavidwan/histalign
Abstract:Despite significant progress in understanding and improving faithfulness in abstractive summarization, the question of how decoding strategies affect faithfulness is less studied. We present a systematic study of the effect of generation techniques such as beam search and nucleus sampling on faithfulness in abstractive summarization. We find a consistent trend where beam search with large beam sizes produces the most faithful summaries while nucleus sampling generates the least faithful ones. We propose two faithfulness-aware generation methods to further improve faithfulness over current generation techniques: (1) ranking candidates generated by beam search using automatic faithfulness metrics and (2) incorporating lookahead heuristics that produce a faithfulness score on the future summary. We show that both generation methods significantly improve faithfulness across two datasets as evaluated by four automatic faithfulness metrics and human evaluation. To reduce computational cost, we demonstrate a simple distillation approach that allows the model to generate faithful summaries with just greedy decoding. Our code is publicly available at https://github.com/amazon-science/faithful-summarization-generation
Abstract:Current metrics for evaluating factuality for abstractive document summarization have achieved high correlations with human judgment, but they do not account for the vision modality and thus are not adequate for vision-and-language summarization. We propose CLIPBERTScore, a simple weighted combination of CLIPScore and BERTScore to leverage the robustness and strong factuality detection performance between image-summary and document-summary, respectively. Next, due to the lack of meta-evaluation benchmarks to evaluate the quality of multimodal factuality metrics, we collect human judgments of factuality with respect to documents and images. We show that this simple combination of two metrics in the zero-shot setting achieves higher correlations than existing factuality metrics for document summarization, outperforms an existing multimodal summarization metric, and performs competitively with strong multimodal factuality metrics specifically fine-tuned for the task. Our thorough analysis demonstrates the robustness and high correlation of CLIPBERTScore and its components on four factuality metric-evaluation benchmarks. Finally, we demonstrate two practical downstream applications of our CLIPBERTScore metric: for selecting important images to focus on during training, and as a reward for reinforcement learning to improve factuality of multimodal summary generation w.r.t automatic and human evaluation. Our data and code are publicly available at https://github.com/meetdavidwan/faithful-multimodal-summ
Abstract:The problems of unfaithful summaries have been widely discussed under the context of abstractive summarization. Though extractive summarization is less prone to the common unfaithfulness issues of abstractive summaries, does that mean extractive is equal to faithful? Turns out that the answer is no. In this work, we define a typology with five types of broad unfaithfulness problems (including and beyond not-entailment) that can appear in extractive summaries, including incorrect coreference, incomplete coreference, incorrect discourse, incomplete discourse, as well as other misleading information. We ask humans to label these problems out of 1500 English summaries produced by 15 diverse extractive systems. We find that 33% of the summaries have at least one of the five issues. To automatically detect these problems, we find that 5 existing faithfulness evaluation metrics for summarization have poor correlations with human judgment. To remedy this, we propose a new metric, ExtEval, that is designed for detecting unfaithful extractive summaries and is shown to have the best performance. We hope our work can increase the awareness of unfaithfulness problems in extractive summarization and help future work to evaluate and resolve these issues. Our data and code are publicly available at https://github.com/ZhangShiyue/extractive_is_not_faithful
Abstract:We present FactPEGASUS, an abstractive summarization model that addresses the problem of factuality during pre-training and fine-tuning: (1) We augment the sentence selection strategy of PEGASUS's (Zhang et al., 2020) pre-training objective to create pseudo-summaries that are both important and factual; (2) We introduce three complementary components for fine-tuning. The corrector removes hallucinations present in the reference summary, the contrastor uses contrastive learning to better differentiate nonfactual summaries from factual ones, and the connector bridges the gap between the pre-training and fine-tuning for better transfer of knowledge. Experiments on three downstream tasks demonstrate that FactPEGASUS substantially improves factuality evaluated by multiple automatic metrics and humans. Our thorough analysis suggests that FactPEGASUS is more factual than using the original pre-training objective in zero-shot and few-shot settings, retains factual behavior more robustly than strong baselines, and does not rely entirely on becoming more extractive to improve factuality. Our code and data are publicly available at: https://github.com/meetdavidwan/factpegasus
Abstract:Typical ASR systems segment the input audio into utterances using purely acoustic information, which may not resemble the sentence-like units that are expected by conventional machine translation (MT) systems for Spoken Language Translation. In this work, we propose a model for correcting the acoustic segmentation of ASR models for low-resource languages to improve performance on downstream tasks. We propose the use of subtitles as a proxy dataset for correcting ASR acoustic segmentation, creating synthetic acoustic utterances by modeling common error modes. We train a neural tagging model for correcting ASR acoustic segmentation and show that it improves downstream performance on MT and audio-document cross-language information retrieval (CLIR).