Abstract:Retrieval augmented generation (RAG) provides the capability to constrain generative model outputs, and mitigate the possibility of hallucination, by providing relevant in-context text. The number of tokens a generative large language model (LLM) can incorporate as context is finite, thus limiting the volume of knowledge from which to generate an answer. We propose a two-layer RAG framework for query-focused answer generation and evaluate a proof-of-concept for this framework in the context of query-focused summary generation from social media forums, focusing on emerging drug-related information. The evaluations demonstrate the effectiveness of the two-layer framework in resource constrained settings to enable researchers in obtaining near real-time data from users.
Abstract:Data accuracy is essential for scientific research and policy development. The National Violent Death Reporting System (NVDRS) data is widely used for discovering the patterns and causes of death. Recent studies suggested the annotation inconsistencies within the NVDRS and the potential impact on erroneous suicide-cause attributions. We present an empirical Natural Language Processing (NLP) approach to detect annotation inconsistencies and adopt a cross-validation-like paradigm to identify problematic instances. We analyzed 267,804 suicide death incidents between 2003 and 2020 from the NVDRS. Our results showed that incorporating the target state's data into training the suicide-crisis classifier brought an increase of 5.4% to the F-1 score on the target state's test set and a decrease of 1.1% on other states' test set. To conclude, we demonstrated the annotation inconsistencies in NVDRS's death investigation notes, identified problematic instances, evaluated the effectiveness of correcting problematic instances, and eventually proposed an NLP improvement solution.
Abstract:Recent data mining research has focused on the analysis of social media text, content and networks to identify suicide ideation online. However, there has been limited research on the temporal dynamics of users and suicide ideation. In this work, we use time-to-event modeling to identify which subreddits have a higher association with users transitioning to posting on r/suicidewatch. For this purpose we use a Cox proportional hazards model that takes as input text and subreddit network features and outputs a probability distribution for the time until a Reddit user posts on r/suicidewatch. In our analysis we find a number of statistically significant features that predict earlier transitions to r/suicidewatch. While some patterns match existing intuition, for example r/depression is positively associated with posting sooner on r/suicidewatch, others were more surprising (for example, the average time between a high risk post on r/Wishlist and a post on r/suicidewatch is 10.2 days). We then discuss these results as well as directions for future research.
Abstract:Social media has been one of the main information consumption sources for the public, allowing people to seek and spread information more quickly and easily. However, the rise of various social media platforms also enables the proliferation of online misinformation. In particular, misinformation in the health domain has significant impacts on our society such as the COVID-19 infodemic. Therefore, health misinformation in social media has become an emerging research direction that attracts increasing attention from researchers of different disciplines. Compared to misinformation in other domains, the key differences of health misinformation include the potential of causing actual harm to humans' bodies and even lives, the hardness to identify for normal people, and the deep connection with medical science. In addition, health misinformation on social media has distinct characteristics from conventional channels such as television on multiple dimensions including the generation, dissemination, and consumption paradigms. Because of the uniqueness and importance of combating health misinformation in social media, we conduct this survey to further facilitate interdisciplinary research on this problem. In this survey, we present a comprehensive review of existing research about online health misinformation in different disciplines. Furthermore, we also systematically organize the related literature from three perspectives: characterization, detection, and intervention. Lastly, we conduct a deep discussion on the pressing open issues of combating health misinformation in social media and provide future directions for multidisciplinary researchers.