Abstract:Time series data plays a critical role across diverse domains such as healthcare, energy, and finance, where tasks like classification, anomaly detection, and forecasting are essential for informed decision-making. Recently, large language models (LLMs) have gained prominence for their ability to handle complex data and extract meaningful insights. This study investigates whether LLMs are effective for time series data analysis by comparing their performance with non-LLM-based approaches across three tasks: classification, anomaly detection, and forecasting. Through a series of experiments using GPT4TS and autoregressive models, we evaluate their performance on benchmark datasets and assess their accuracy, precision, and ability to generalize. Our findings indicate that while LLM-based methods excel in specific tasks like anomaly detection, their benefits are less pronounced in others, such as forecasting, where simpler models sometimes perform comparably or better. This research highlights the role of LLMs in time series analysis and lays the groundwork for future studies to systematically explore their applications and limitations in handling temporal data.
Abstract:Social determinants of health (SDoH) play a crucial role in patient health outcomes, yet their integration into biomedical knowledge graphs remains underexplored. This study addresses this gap by constructing an SDoH-enriched knowledge graph using the MIMIC-III dataset and PrimeKG. We introduce a novel fairness formulation for graph embeddings, focusing on invariance with respect to sensitive SDoH information. Via employing a heterogeneous-GCN model for drug-disease link prediction, we detect biases related to various SDoH factors. To mitigate these biases, we propose a post-processing method that strategically reweights edges connected to SDoHs, balancing their influence on graph representations. This approach represents one of the first comprehensive investigations into fairness issues within biomedical knowledge graphs incorporating SDoH. Our work not only highlights the importance of considering SDoH in medical informatics but also provides a concrete method for reducing SDoH-related biases in link prediction tasks, paving the way for more equitable healthcare recommendations. Our code is available at \url{https://github.com/hwq0726/SDoH-KG}.
Abstract:Accurate diagnosis and prognosis assisted by pathology images are essential for cancer treatment selection and planning. Despite the recent trend of adopting deep-learning approaches for analyzing complex pathology images, they fall short as they often overlook the domain-expert understanding of tissue structure and cell composition. In this work, we focus on a challenging Open-ended Pathology VQA (PathVQA-Open) task and propose a novel framework named Path-RAG, which leverages HistoCartography to retrieve relevant domain knowledge from pathology images and significantly improves performance on PathVQA-Open. Admitting the complexity of pathology image analysis, Path-RAG adopts a human-centered AI approach by retrieving domain knowledge using HistoCartography to select the relevant patches from pathology images. Our experiments suggest that domain guidance can significantly boost the accuracy of LLaVA-Med from 38% to 47%, with a notable gain of 28% for H&E-stained pathology images in the PathVQA-Open dataset. For longer-form question and answer pairs, our model consistently achieves significant improvements of 32.5% in ARCH-Open PubMed and 30.6% in ARCH-Open Books on H\&E images. Our code and dataset is available here (https://github.com/embedded-robotics/path-rag).
Abstract:Optimizing Cox regression and its neural network variants poses substantial computational challenges in large-scale studies. Stochastic gradient descent (SGD), known for its scalability in model optimization, has recently been adapted to optimize Cox models. Unlike its conventional application, which typically targets a sum of independent individual loss, SGD for Cox models updates parameters based on the partial likelihood of a subset of data. Despite its empirical success, the theoretical foundation for optimizing Cox partial likelihood with SGD is largely underexplored. In this work, we demonstrate that the SGD estimator targets an objective function that is batch-size-dependent. We establish that the SGD estimator for the Cox neural network (Cox-NN) is consistent and achieves the optimal minimax convergence rate up to a polylogarithmic factor. For Cox regression, we further prove the $\sqrt{n}$-consistency and asymptotic normality of the SGD estimator, with variance depending on the batch size. Furthermore, we quantify the impact of batch size on Cox-NN training and its effect on the SGD estimator's asymptotic efficiency in Cox regression. These findings are validated by extensive numerical experiments and provide guidance for selecting batch sizes in SGD applications. Finally, we demonstrate the effectiveness of SGD in a real-world application where GD is unfeasible due to the large scale of data.
Abstract:Extracting social determinants of health (SDoH) from unstructured medical notes depends heavily on labor-intensive annotations, which are typically task-specific, hampering reusability and limiting sharing. In this study we introduced SDoH-GPT, a simple and effective few-shot Large Language Model (LLM) method leveraging contrastive examples and concise instructions to extract SDoH without relying on extensive medical annotations or costly human intervention. It achieved tenfold and twentyfold reductions in time and cost respectively, and superior consistency with human annotators measured by Cohen's kappa of up to 0.92. The innovative combination of SDoH-GPT and XGBoost leverages the strengths of both, ensuring high accuracy and computational efficiency while consistently maintaining 0.90+ AUROC scores. Testing across three distinct datasets has confirmed its robustness and accuracy. This study highlights the potential of leveraging LLMs to revolutionize medical note classification, demonstrating their capability to achieve highly accurate classifications with significantly reduced time and cost.
Abstract:Graph Neural Networks (GNNs) have attracted immense attention in the past decade due to their numerous real-world applications built around graph-structured data. On the other hand, Large Language Models (LLMs) with extensive pretrained knowledge and powerful semantic comprehension abilities have recently shown a remarkable ability to benefit applications using vision and text data. In this paper, we investigate how LLMs can be leveraged in a computationally efficient fashion to benefit rich graph-structured data, a modality relatively unexplored in LLM literature. Prior works in this area exploit LLMs to augment every node features in an ad-hoc fashion (not scalable for large graphs), use natural language to describe the complex structural information of graphs, or perform computationally expensive finetuning of LLMs in conjunction with GNNs. We propose E-LLaGNN (Efficient LLMs augmented GNNs), a framework with an on-demand LLM service that enriches message passing procedure of graph learning by enhancing a limited fraction of nodes from the graph. More specifically, E-LLaGNN relies on sampling high-quality neighborhoods using LLMs, followed by on-demand neighborhood feature enhancement using diverse prompts from our prompt catalog, and finally information aggregation using message passing from conventional GNN architectures. We explore several heuristics-based active node selection strategies to limit the computational and memory footprint of LLMs when handling millions of nodes. Through extensive experiments & ablation on popular graph benchmarks of varying scales (Cora, PubMed, ArXiv, & Products), we illustrate the effectiveness of our E-LLaGNN framework and reveal many interesting capabilities such as improved gradient flow in deep GNNs, LLM-free inference ability etc.
Abstract:Recent advancements in large language models (LLMs) have achieved promising performances across various applications. Nonetheless, the ongoing challenge of integrating long-tail knowledge continues to impede the seamless adoption of LLMs in specialized domains. In this work, we introduce DALK, a.k.a. Dynamic Co-Augmentation of LLMs and KG, to address this limitation and demonstrate its ability on studying Alzheimer's Disease (AD), a specialized sub-field in biomedicine and a global health priority. With a synergized framework of LLM and KG mutually enhancing each other, we first leverage LLM to construct an evolving AD-specific knowledge graph (KG) sourced from AD-related scientific literature, and then we utilize a coarse-to-fine sampling method with a novel self-aware knowledge retrieval approach to select appropriate knowledge from the KG to augment LLM inference capabilities. The experimental results, conducted on our constructed AD question answering (ADQA) benchmark, underscore the efficacy of DALK. Additionally, we perform a series of detailed analyses that can offer valuable insights and guidelines for the emerging topic of mutually enhancing KG and LLM. We will release the code and data at https://github.com/David-Li0406/DALK.
Abstract:Data accuracy is essential for scientific research and policy development. The National Violent Death Reporting System (NVDRS) data is widely used for discovering the patterns and causes of death. Recent studies suggested the annotation inconsistencies within the NVDRS and the potential impact on erroneous suicide-cause attributions. We present an empirical Natural Language Processing (NLP) approach to detect annotation inconsistencies and adopt a cross-validation-like paradigm to identify problematic instances. We analyzed 267,804 suicide death incidents between 2003 and 2020 from the NVDRS. Our results showed that incorporating the target state's data into training the suicide-crisis classifier brought an increase of 5.4% to the F-1 score on the target state's test set and a decrease of 1.1% on other states' test set. To conclude, we demonstrated the annotation inconsistencies in NVDRS's death investigation notes, identified problematic instances, evaluated the effectiveness of correcting problematic instances, and eventually proposed an NLP improvement solution.
Abstract:We present the Thought Graph as a novel framework to support complex reasoning and use gene set analysis as an example to uncover semantic relationships between biological processes. Our framework stands out for its ability to provide a deeper understanding of gene sets, significantly surpassing GSEA by 40.28% and LLM baselines by 5.38% based on cosine similarity to human annotations. Our analysis further provides insights into future directions of biological processes naming, and implications for bioinformatics and precision medicine.
Abstract:Purpose: Limited studies exploring concrete methods or approaches to tackle and enhance model fairness in the radiology domain. Our proposed AI model utilizes supervised contrastive learning to minimize bias in CXR diagnosis. Materials and Methods: In this retrospective study, we evaluated our proposed method on two datasets: the Medical Imaging and Data Resource Center (MIDRC) dataset with 77,887 CXR images from 27,796 patients collected as of April 20, 2023 for COVID-19 diagnosis, and the NIH Chest X-ray (NIH-CXR) dataset with 112,120 CXR images from 30,805 patients collected between 1992 and 2015. In the NIH-CXR dataset, thoracic abnormalities include atelectasis, cardiomegaly, effusion, infiltration, mass, nodule, pneumonia, pneumothorax, consolidation, edema, emphysema, fibrosis, pleural thickening, or hernia. Our proposed method utilizes supervised contrastive learning with carefully selected positive and negative samples to generate fair image embeddings, which are fine-tuned for subsequent tasks to reduce bias in chest X-ray (CXR) diagnosis. We evaluated the methods using the marginal AUC difference ($\delta$ mAUC). Results: The proposed model showed a significant decrease in bias across all subgroups when compared to the baseline models, as evidenced by a paired T-test (p<0.0001). The $\delta$ mAUC obtained by our method were 0.0116 (95\% CI, 0.0110-0.0123), 0.2102 (95% CI, 0.2087-0.2118), and 0.1000 (95\% CI, 0.0988-0.1011) for sex, race, and age on MIDRC, and 0.0090 (95\% CI, 0.0082-0.0097) for sex and 0.0512 (95% CI, 0.0512-0.0532) for age on NIH-CXR, respectively. Conclusion: Employing supervised contrastive learning can mitigate bias in CXR diagnosis, addressing concerns of fairness and reliability in deep learning-based diagnostic methods.