Abstract:This study addresses the challenge of predicting post-stroke rigidity by emphasizing feature interactions through graph-based explainable AI. Post-stroke rigidity, characterized by increased muscle tone and stiffness, significantly affects survivors' mobility and quality of life. Despite its prevalence, early prediction remains limited, delaying intervention. We analyze 519K stroke hospitalization records from the Healthcare Cost and Utilization Project dataset, where 43% of patients exhibited rigidity. We compare traditional approaches such as Logistic Regression, XGBoost, and Transformer with graph-based models like Graphormer and Graph Attention Network. These graph models inherently capture feature interactions and incorporate intrinsic or post-hoc explainability. Our results show that graph-based methods outperform others (AUROC 0.75), identifying key predictors such as NIH Stroke Scale and APR-DRG mortality risk scores. They also uncover interactions missed by conventional models. This research provides a novel application of graph-based XAI in stroke prognosis, with potential to guide early identification and personalized rehabilitation strategies.