Abstract:Thematic analysis (TA) is a widely used qualitative approach for uncovering latent meanings in unstructured text data. TA provides valuable insights in healthcare but is resource-intensive. Large Language Models (LLMs) have been introduced to perform TA, yet their applications in healthcare remain unexplored. Here, we propose TAMA: A Human-AI Collaborative Thematic Analysis framework using Multi-Agent LLMs for clinical interviews. We leverage the scalability and coherence of multi-agent systems through structured conversations between agents and coordinate the expertise of cardiac experts in TA. Using interview transcripts from parents of children with Anomalous Aortic Origin of a Coronary Artery (AAOCA), a rare congenital heart disease, we demonstrate that TAMA outperforms existing LLM-assisted TA approaches, achieving higher thematic hit rate, coverage, and distinctiveness. TAMA demonstrates strong potential for automated TA in clinical settings by leveraging multi-agent LLM systems with human-in-the-loop integration by enhancing quality while significantly reducing manual workload.
Abstract:Automated generation of scientific protocols executable by robots can significantly accelerate scientific research processes. Large Language Models (LLMs) excel at Scientific Protocol Formulation Tasks (SPFT), but the evaluation of their capabilities rely on human evaluation. Here, we propose a flexible, automatic framework to evaluate LLM's capability on SPFT: ProtocoLLM. This framework prompts the target model and GPT-4 to extract pseudocode from biology protocols using only predefined lab actions and evaluates the output of target model using LLAM-EVAL, the pseudocode generated by GPT-4 serving as a baseline and Llama-3 acting as the evaluator. Our adaptable prompt-based evaluation method, LLAM-EVAL, offers significant flexibility in terms of evaluation model, material, criteria, and is free of cost. We evaluate GPT variations, Llama, Mixtral, Gemma, Cohere, and Gemini. Overall, we find that GPT and Cohere is a powerful scientific protocol formulators. We also introduce BIOPROT 2.0, a dataset with biology protocols and corresponding pseudocodes, which can aid LLMs in formulation and evaluation of SPFT. Our work is extensible to assess LLMs on SPFT across various domains and other fields that require protocol generation for specific goals.