Abstract:Co-clustering exploits the duality of instances and features to simultaneously uncover meaningful groups in both dimensions, often outperforming traditional clustering in high-dimensional or sparse data settings. Although recent deep learning approaches successfully integrate feature learning and cluster assignment, they remain susceptible to noise and can suffer from posterior collapse within standard autoencoders. In this paper, we present the first fully variational Co-clustering framework that directly learns row and column clusters in the latent space, leveraging a doubly reparameterized ELBO to improve gradient signal-to-noise separation. Our unsupervised model integrates a Variational Deep Embedding with a Gaussian Mixture Model (GMM) prior for both instances and features, providing a built-in clustering mechanism that naturally aligns latent modes with row and column clusters. Furthermore, our regularized end-to-end noise learning Compositional ELBO architecture jointly reconstructs the data while regularizing against noise through the KL divergence, thus gracefully handling corrupted or missing inputs in a single training pipeline. To counteract posterior collapse, we introduce a scale modification that increases the encoder's latent means only in the reconstruction pathway, preserving richer latent representations without inflating the KL term. Finally, a mutual information-based cross-loss ensures coherent co-clustering of rows and columns. Empirical results on diverse real-world datasets from multiple modalities, numerical, textual, and image-based, demonstrate that our method not only preserves the advantages of prior Co-clustering approaches but also exceeds them in accuracy and robustness, particularly in high-dimensional or noisy settings.
Abstract:Point cloud representation has gained traction due to its efficient memory usage and simplicity in acquisition, manipulation, and storage. However, as point cloud sizes increase, effective down-sampling becomes essential to address the computational requirements of downstream tasks. Classical approaches, such as furthest point sampling (FPS), perform well on benchmarks but rely on heuristics and overlook geometric features, like curvature, during down-sampling. In this paper, We introduce a reinforcement learning-based sampling algorithm that enhances FPS by integrating curvature information. Our approach ranks points by combining FPS-derived soft ranks with curvature scores computed by a deep neural network, allowing us to replace a proportion of low-curvature points in the FPS set with high-curvature points from the unselected set. Existing differentiable sampling techniques often suffer from training instability, hindering their integration into end-to-end learning frameworks. By contrast, our method achieves stable end-to-end learning, consistently outperforming baseline models across multiple downstream geometry processing tasks. We provide comprehensive ablation studies, with both qualitative and quantitative insights into the effect of each feature on performance. Our algorithm establishes state-of-the-art results for classification, segmentation and shape completion, showcasing its robustness and adaptability.