Abstract:Material segmentation is a complex task, particularly when dealing with aerial data in poor lighting and atmospheric conditions. To address this, hyperspectral data from specialized cameras can be very useful in addition to RGB images. However, due to hardware constraints, high spectral data often come with lower spatial resolution. Additionally, incorporating such data into a learning-based segmentation framework is challenging due to the numerous data channels involved. To overcome these difficulties, we propose an innovative Siamese framework that uses time series-based compression to effectively and scalably integrate the additional spectral data into the segmentation task. We demonstrate our model's effectiveness through competitive benchmarks on aerial datasets in various environmental conditions.
Abstract:This paper presents a novel approach 4DRecons that takes a single camera RGB-D sequence of a dynamic subject as input and outputs a complete textured deforming 3D model over time. 4DRecons encodes the output as a 4D neural implicit surface and presents an optimization procedure that combines a data term and two regularization terms. The data term fits the 4D implicit surface to the input partial observations. We address fundamental challenges in fitting a complete implicit surface to partial observations. The first regularization term enforces that the deformation among adjacent frames is as rigid as possible (ARAP). To this end, we introduce a novel approach to compute correspondences between adjacent textured implicit surfaces, which are used to define the ARAP regularization term. The second regularization term enforces that the topology of the underlying object remains fixed over time. This regularization is critical for avoiding self-intersections that are typical in implicit-based reconstructions. We have evaluated the performance of 4DRecons on a variety of datasets. Experimental results show that 4DRecons can handle large deformations and complex inter-part interactions and outperform state-of-the-art approaches considerably.
Abstract:Reinforcement learning (RL) with continuous state and action spaces remains one of the most challenging problems within the field. Most current learning methods focus on integral identities such as value functions to derive an optimal strategy for the learning agent. In this paper, we instead study the dual form of the original RL formulation to propose the first differential RL framework that can handle settings with limited training samples and short-length episodes. Our approach introduces Differential Policy Optimization (DPO), a pointwise and stage-wise iteration method that optimizes policies encoded by local-movement operators. We prove a pointwise convergence estimate for DPO and provide a regret bound comparable with current theoretical works. Such pointwise estimate ensures that the learned policy matches the optimal path uniformly across different steps. We then apply DPO to a class of practical RL problems which search for optimal configurations with Lagrangian rewards. DPO is easy to implement, scalable, and shows competitive results on benchmarking experiments against several popular RL methods.
Abstract:While time series classification and forecasting problems have been extensively studied, the cases of noisy time series data with arbitrary time sequence lengths have remained challenging. Each time series instance can be thought of as a sample realization of a noisy dynamical model, which is characterized by a continuous stochastic process. For many applications, the data are mixed and consist of several types of noisy time series sequences modeled by multiple stochastic processes, making the forecasting and classification tasks even more challenging. Instead of regressing data naively and individually to each time series type, we take a latent variable model approach using a mixtured Gaussian processes with learned spectral kernels. More specifically, we auto-assign each type of noisy time series data a signature vector called its motion code. Then, conditioned on each assigned motion code, we infer a sparse approximation of the corresponding time series using the concept of the most informative timestamps. Our unmixing classification approach involves maximizing the likelihood across all the mixed noisy time series sequences of varying lengths. This stochastic approach allows us to learn not only within a single type of noisy time series data but also across many underlying stochastic processes, giving us a way to learn multiple dynamical models in an integrated and robust manner. The different learned latent stochastic models allow us to generate specific sub-type forecasting. We provide several quantitative comparisons demonstrating the performance of our approach.
Abstract:This paper introduces GenCorres, a novel unsupervised joint shape matching (JSM) approach. The basic idea of GenCorres is to learn a parametric mesh generator to fit an unorganized deformable shape collection while constraining deformations between adjacent synthetic shapes to preserve geometric structures such as local rigidity and local conformality. GenCorres presents three appealing advantages over existing JSM techniques. First, GenCorres performs JSM among a synthetic shape collection whose size is much bigger than the input shapes and fully leverages the data-driven power of JSM. Second, GenCorres unifies consistent shape matching and pairwise matching (i.e., by enforcing deformation priors between adjacent synthetic shapes). Third, the generator provides a concise encoding of consistent shape correspondences. However, learning a mesh generator from an unorganized shape collection is challenging. It requires a good initial fitting to each shape and can easily get trapped by local minimums. GenCorres addresses this issue by learning an implicit generator from the input shapes, which provides intermediate shapes between two arbitrary shapes. We introduce a novel approach for computing correspondences between adjacent implicit surfaces and force the correspondences to preserve geometric structures and be cycle-consistent. Synthetic shapes of the implicit generator then guide initial fittings (i.e., via template-based deformation) for learning the mesh generator. Experimental results show that GenCorres considerably outperforms state-of-the-art JSM techniques on benchmark datasets. The synthetic shapes of GenCorres preserve local geometric features and yield competitive performance gains against state-of-the-art deformable shape generators.
Abstract:We present DeblurSR, a novel motion deblurring approach that converts a blurry image into a sharp video. DeblurSR utilizes event data to compensate for motion ambiguities and exploits the spiking representation to parameterize the sharp output video as a mapping from time to intensity. Our key contribution, the Spiking Representation (SR), is inspired by the neuromorphic principles determining how biological neurons communicate with each other in living organisms. We discuss why the spikes can represent sharp edges and how the spiking parameters are interpreted from the neuromorphic perspective. DeblurSR has higher output quality and requires fewer computing resources than state-of-the-art event-based motion deblurring methods. We additionally show that our approach easily extends to video super-resolution when combined with recent advances in implicit neural representation. The implementation and animated visualization of DeblurSR are available at https://github.com/chensong1995/DeblurSR.
Abstract:Protein structure prediction is a fundamental problem in computational molecular biology. Classical algorithms such as ab-initio or threading as well as many learning methods have been proposed to solve this challenging problem. However, most reinforcement learning methods tend to model the state-action pairs as discrete objects. In this paper, we develop a reinforcement learning (RL) framework in a continuous setting and based on a stochastic parametrized Hamiltonian version of the Pontryagin maximum principle (PMP) to solve the side-chain packing and protein-folding problem. For special cases our formulation can be reduced to previous work where the optimal folding trajectories are trained using an explicit use of Langevin dynamics. Optimal continuous stochastic Hamiltonian dynamics folding pathways can be derived with use of different models of molecular energetics and force fields. In our RL implementation we adopt a soft actor-critic methodology however we can replace this other RL training based on A2C, A3C or PPO.
Abstract:Task learning in neural networks typically requires finding a globally optimal minimizer to a loss function objective. Conventional designs of swarm based optimization methods apply a fixed update rule, with possibly an adaptive step-size for gradient descent based optimization. While these methods gain huge success in solving different optimization problems, there are some cases where these schemes are either inefficient or suffering from local-minimum. We present a new particle-swarm-based framework utilizing Gaussian Process Regression to learn the underlying dynamical process of descent. The biggest advantage of this approach is greater exploration around the current state before deciding a descent direction. Empirical results show our approach can escape from the local minima compare with the widely-used state-of-the-art optimizers when solving non-convex optimization problems. We also test our approach under high-dimensional parameter space case, namely, image classification task.
Abstract:Hyperspectral images provide a rich representation of the underlying spectrum for each pixel, allowing for a pixel-wise classification/segmentation into different classes. As the acquisition of labeled training data is very time-consuming, unsupervised methods become crucial in hyperspectral image analysis. The spectral variability and noise in hyperspectral data make this task very challenging and define special requirements for such methods. Here, we present a novel unsupervised hyperspectral segmentation framework. It starts with a denoising and dimensionality reduction step by the well-established Minimum Noise Fraction (MNF) transform. Then, the Mumford-Shah (MS) segmentation functional is applied to segment the data. We equipped the MS functional with a novel robust distribution-dependent indicator function designed to handle the characteristic challenges of hyperspectral data. To optimize our objective function with respect to the parameters for which no closed form solution is available, we propose an efficient fixed point iteration scheme. Numerical experiments on four public benchmark datasets show that our method produces competitive results, which outperform two state-of-the-art methods substantially on three of these datasets.
Abstract:A camera begins to sense light the moment we press the shutter button. During the exposure interval, relative motion between the scene and the camera causes motion blur, a common undesirable visual artifact. This paper presents E-CIR, which converts a blurry image into a sharp video represented as a parametric function from time to intensity. E-CIR leverages events as an auxiliary input. We discuss how to exploit the temporal event structure to construct the parametric bases. We demonstrate how to train a deep learning model to predict the function coefficients. To improve the appearance consistency, we further introduce a refinement module to propagate visual features among consecutive frames. Compared to state-of-the-art event-enhanced deblurring approaches, E-CIR generates smoother and more realistic results. The implementation of E-CIR is available at https://github.com/chensong1995/E-CIR.